RESUMO
We investigated the dynamics of seroconversion in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. During March 29-May 22, 2020, we collected serum samples and associated clinical data from 177 persons in London, UK, who had SARS-CoV-2 infection. We measured IgG against SARS-CoV-2 and compared antibody levels with patient outcomes, demographic information, and laboratory characteristics. We found that 2.0%-8.5% of persons did not seroconvert 3-6 weeks after infection. Persons who seroconverted were older, were more likely to have concurrent conditions, and had higher levels of inflammatory markers. Non-White persons had higher antibody concentrations than those who identified as White; these concentrations did not decline during follow-up. Serologic assay results correlated with disease outcome, race, and other risk factors for severe SARS-CoV-2 infection. Serologic assays can be used in surveillance to clarify the duration and protective nature of humoral responses to SARS-CoV-2 infection.
Assuntos
COVID-19/sangue , COVID-19/imunologia , Imunoglobulina G/sangue , SARS-CoV-2 , Soroconversão , Adulto , Idoso , Anticorpos Antivirais/sangue , COVID-19/fisiopatologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
PCR of upper respiratory specimens is the diagnostic standard for severe acute respiratory syndrome coronavirus 2 infection. However, saliva sampling is an easy alternative to nasal and throat swabbing. We found similar viral loads in saliva samples and in nasal and throat swab samples from 110 patients with coronavirus disease.
Assuntos
Betacoronavirus/isolamento & purificação , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Saliva/virologia , Adulto , Idoso , COVID-19 , Teste para COVID-19 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nariz/virologia , Pandemias , Faringe/virologia , SARS-CoV-2 , Carga ViralRESUMO
BACKGROUND: Tsetse flies (Glossina sp.) are vectors of Trypanosoma brucei subspecies that cause human African trypanosomiasis (HAT). Capturing and screening tsetse is critical for HAT surveillance. Classically, tsetse have been microscopically analysed to identify trypanosomes, but this is increasingly replaced with molecular xenomonitoring. Nonetheless, sensitive T. brucei-detection assays, such as TBR-PCR, are vulnerable to DNA cross-contamination. This may occur at capture, when often multiple live tsetse are retained temporarily in the cage of a trap. This study set out to determine whether infected tsetse can contaminate naïve tsetse with T. brucei DNA via faeces when co-housed. METHODOLOGY/PRINCIPLE FINDINGS: Insectary-reared teneral G. morsitans morsitans were fed an infectious T. b. brucei-spiked bloodmeal. At 19 days post-infection, infected and naïve tsetse were caged together in the following ratios: (T1) 9:3, (T2) 6:6 (T3) 1:11 and a control (C0) 0:12 in triplicate. Following 24-hour incubation, DNA was extracted from each fly and screened for parasite DNA presence using PCR and qPCR. All insectary-reared infected flies were positive for T. brucei DNA using TBR-qPCR. However, naïve tsetse also tested positive. Even at a ratio of 1 infected to 11 naïve flies, 91% of naïve tsetse gave positive TBR-qPCR results. Furthermore, the quantity of T. brucei DNA detected in naïve tsetse was significantly correlated with cage infection ratio. With evidence of cross-contamination, field-caught tsetse from Tanzania were then assessed using the same screening protocol. End-point TBR-PCR predicted a sample population prevalence of 24.8%. Using qPCR and Cq cut-offs optimised on insectary-reared flies, we estimated that prevalence was 0.5% (95% confidence interval [0.36, 0.73]). CONCLUSIONS/SIGNIFICANCE: Our results show that infected tsetse can contaminate naïve flies with T. brucei DNA when co-caged, and that the level of contamination can be extensive. Whilst simple PCR may overestimate infection prevalence, quantitative PCR offers a means of eliminating false positives.
Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Moscas Tsé-Tsé/parasitologia , Trypanosoma brucei brucei/isolamento & purificação , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/transmissão , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/diagnóstico , DNA de Protozoário/genética , DNA de Protozoário/análise , Insetos Vetores/parasitologia , Fezes/parasitologia , Feminino , Masculino , Reação em Cadeia da Polimerase/métodosRESUMO
BACKGROUND: Tsetse flies (Glossina) transmit Trypanosoma brucei gambiense which causes Gambian human African trypanosomiasis (gHAT) in Central and West Africa. Several countries use Tiny Targets, comprising insecticide-treated panels of material which attract and kill tsetse, as part of their national programmes to eliminate gHAT. We studied how the scale and arrangement of target deployment affected the efficacy of control. METHODOLOGY AND PRINCIPAL FINDINGS: Between 2012 and 2016, Tiny Targets were deployed biannually along the larger rivers of Arua, Maracha, Koboko and Yumbe districts in North West Uganda with the aim of reducing the abundance of tsetse to interrupt transmission. The extent of these deployments increased from ~250 km2 in 2012 to ~1600 km2 in 2015. The impact of Tiny Targets on tsetse populations was assessed by analysing catches of tsetse from a network of monitoring traps; sub-samples of captured tsetse were dissected to estimate their age and infection status. In addition, the condition of 780 targets (~195/district) was assessed for up to six months after deployment. In each district, mean daily catches of tsetse (G. fuscipes fuscipes) from monitoring traps declined significantly by >80% following the deployment of targets. The reduction was apparent for several kilometres on adjacent lengths of the same river but not in other rivers a kilometre or so away. Expansion of the operational area did not always produce higher levels of suppression or detectable change in the age structure or infection rates of the population, perhaps due to the failure to treat the smaller streams and/or invasion from adjacent untreated areas. The median effective life of a Tiny Target was 61 (41.8-80.2, 95% CI) days. CONCLUSIONS: Scaling-up of tsetse control reduced the population of tsetse by >80% across the intervention area. Even better control might be achievable by tackling invasion of flies from infested areas within and outside the current intervention area. This might involve deploying more targets, especially along smaller rivers, and extending the effective life of Tiny Targets.
Assuntos
Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Gâmbia , Humanos , Controle de Insetos/métodos , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/prevenção & controle , Uganda/epidemiologiaRESUMO
BACKGROUND: There are an abundance of commercially available lateral flow assays (LFAs) that detect antibodies to SARS-CoV-2. Whilst these are usually evaluated by the manufacturer, externally performed diagnostic accuracy studies to assess performance are essential. Herein we present an evaluation of 12 LFAs. METHODS: Sera from 100 SARS-CoV-2 reverse-transcriptase polymerase chain reaction (RT-PCR) positive participants were recruited through the FASTER study. A total of 105 pre-pandemic sera from participants with other infections were included as negative samples. RESULTS: At presentation sensitivity against RT-PCR ranged from 37.4 to 79% for IgM/IgG, 30.3-74% for IgG, and 21.2-67% for IgM. Sensitivity for IgM/IgG improved ≥ 21 days post symptom onset for 10/12 tests. Specificity ranged from 74.3 to 99.1% for IgM/IgG, 82.9-100% for IgG, and 75.2-98% for IgM. Compared to the EuroImmun IgG enzyme-linked immunosorbent assay (ELISA), sensitivity and specificity ranged from 44.6 to 95.4% and 85.4-100%, respectively. CONCLUSION: There are many LFAs available with varied sensitivity and specificity. Understanding the diagnostic accuracy of these tests will be vital as we come to rely more on the antibody status of a person moving forward, and as such manufacturer-independent evaluations are crucial.
Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/diagnóstico , Humanos , Imunoensaio , Imunoglobulina G , Imunoglobulina M , Sensibilidade e EspecificidadeRESUMO
Serological testing is emerging as a powerful tool to progress our understanding of COVID-19 exposure, transmission and immune response. Large-scale testing is limited by the need for in-person blood collection by staff trained in venepuncture, and the limited sensitivity of lateral flow tests. Capillary blood self-sampling and postage to laboratories for analysis could provide a reliable alternative. Two-hundred and nine matched venous and capillary blood samples were obtained from thirty nine participants and analysed using a COVID-19 IgG ELISA to detect antibodies against SARS-CoV-2. Thirty eight out of thirty nine participants were able to self-collect an adequate sample of capillary blood (≥ 50 µl). Using plasma from venous blood collected in lithium heparin as the reference standard, matched capillary blood samples, collected in lithium heparin-treated tubes and on filter paper as dried blood spots, achieved a Cohen's kappa coefficient of > 0.88 (near-perfect agreement, 95% CI 0.738-1.000). Storage of capillary blood at room temperature for up to 7 days post sampling did not affect concordance. Our results indicate that capillary blood self-sampling is a reliable and feasible alternative to venepuncture for serological assessment in COVID-19.
Assuntos
Coleta de Amostras Sanguíneas/métodos , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/isolamento & purificação , Adulto , COVID-19/sangue , Teste em Amostras de Sangue Seco/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
BACKGROUND: In 2005, Bangladesh, India and Nepal agreed to eliminate visceral leishmaniasis (VL) as a public health problem. The approach to this was through improved case detection and treatment, and controlling transmission by the sand fly vector Phlebotomus argentipes, with indoor residual spraying (IRS) of insecticide. Initially, India applied DDT with stirrup pumps for IRS, however, this did not reduce transmission. After 2015 onwards, the pyrethroid alpha-cypermethrin was applied with compression pumps, and entomological surveillance was initiated in 2016. METHODS: Eight sentinel sites were established in the Indian states of Bihar, Jharkhand and West Bengal. IRS coverage was monitored by household survey, quality of insecticide application was measured by HPLC, presence and abundance of the VL vector was monitored by CDC light traps, insecticide resistance was measured with WHO diagnostic assays and case incidence was determined from the VL case register KAMIS. RESULTS: Complete treatment of houses with IRS increased across all sites from 57% in 2016 to 70% of houses in 2019, rising to >80% if partial house IRS coverage is included (except West Bengal). The quality of insecticide application has improved compared to previous studies, average doses of insecticide on filters papers ranged from 1.52 times the target dose of 25mg/m2 alpha-cypermethrin in 2019 to 1.67 times in 2018. Resistance to DDT has continued to increase, but the vector was not resistant to carbamates, organophosphates or pyrethroids. The annual and seasonal abundance of P. argentipes declined between 2016 to 2019 with an overall infection rate of 0.03%. This was associated with a decline in VL incidence for the blocks represented by the sentinel sites from 1.16 per 10,000 population in 2016 to 0.51 per 10,000 in 2019. CONCLUSION: Through effective case detection and management reducing the infection reservoirs for P. argentipes in the human population combined with IRS keeping P. argentipes abundance and infectivity low has reduced VL transmission. This combination of effective case management and vector control has now brought India within reach of the VL elimination targets.
Assuntos
Controle de Insetos/normas , Insetos Vetores/parasitologia , Inseticidas/administração & dosagem , Leishmaniose Visceral/prevenção & controle , Phlebotomus/parasitologia , Animais , Bioensaio , Feminino , Humanos , Índia/epidemiologia , Controle de Insetos/métodos , Resistência a Inseticidas , Leishmaniose Visceral/epidemiologia , Psychodidae/efeitos dos fármacos , Piretrinas/administração & dosagemRESUMO
Persistent insecticides sprayed onto house walls, and incorporated into insecticide-treated bednets, provide long-acting, cost-effective control of vector-borne diseases such as malaria and leishmaniasis. The high concentrations that occur immediately postdeployment may kill both resistant and susceptible insects. However, insecticide concentration, and therefore killing ability, declines in the months after deployment. As concentrations decline, resistant insects start to survive, while susceptible insects are still killed. The period of time after deployment, within which the mortality of resistant individuals is lower than that of susceptible ones, has been termed the "window of selection" in other contexts. It is recognized as driving resistance in bacteria and malaria parasites, both of which are predominantly haploid. We argue that paying more attention to these mortality differences can help understand the evolution of insecticide resistance. Because insects are diploid, resistance encoded by single genes generates heterozygotes. This gives the potential for a narrower "window of dominance," within the window of selection, where heterozygote mortality is lower than that of susceptible homozygotes. We explore the general properties of windows of selection and dominance in driving resistance. We quantify their likely effect using data from new laboratory experiments and published data from the laboratory and field. These windows can persist months or years after insecticide deployments. Differential mortalities of resistant, susceptible and heterozygous genotypes, after public health deployments, constitute a major challenge to controlling resistance. Greater attention to mortality differences by genotype would inform strategies to reduce the evolution of resistance to existing and new insecticides.
RESUMO
Human African Trypanosomiasis (HAT) is a potentially fatal parasitic infection caused by the trypanosome sub-species Trypanosoma brucei gambiense and T. b. rhodesiense transmitted by tsetse flies. Currently, global HAT case numbers are reaching less than 1 case per 10,000 people in many disease foci. As such, there is a need for simple screening tools and strategies to replace active screening of the human population which can be maintained post-elimination for Gambian HAT and long-term for Rhodesian HAT. Here, we describe the proof of principle application of a novel high-resolution melt assay for the xenomonitoring of Trypanosoma brucei gambiense and T. b. rhodesiense in tsetse. Both novel and previously described primers which target species-specific single copy genes were used as part of a multiplex qPCR. An additional primer set was included in the multiplex to determine if samples had sufficient genomic material for detecting genes present in low copy number. The assay was evaluated on 96 wild-caught tsetse previously identified to be positive for T. brucei s. l. of which two were known to be positive for T. b. rhodesiense. The assay was found to be highly specific with no cross-reactivity with non-target trypanosome species and the assay limit of detection was 104 tryps/mL. The qPCR successfully identified three T. b. rhodesiense positive flies, in agreement with the reference species-specific PCRs. This assay provides an alternative to running multiple PCRs when screening for pathogenic sub-species of T. brucei s. l. and produces results in less than 2 hours, avoiding gel electrophoresis and subjective analysis. This method could provide a component of a simple and efficient method of screening large numbers of tsetse flies in known HAT foci or in areas at risk of recrudescence or threatened by the changing distribution of both forms of HAT.
Assuntos
DNA de Protozoário/análise , Trypanosoma brucei gambiense/genética , Trypanosoma brucei rhodesiense/genética , Tripanossomíase Africana/diagnóstico , Moscas Tsé-Tsé/parasitologia , Animais , Primers do DNA/genética , DNA de Protozoário/genética , Humanos , Limite de Detecção , Programas de Rastreamento/métodos , Desnaturação de Ácido Nucleico/genética , Estudo de Prova de Conceito , Reação em Cadeia da Polimerase em Tempo Real , Trypanosoma brucei gambiense/isolamento & purificação , Trypanosoma brucei rhodesiense/isolamento & purificaçãoRESUMO
Understanding variations in malaria transmission and exposure is critical to identify populations at risk and enable better targeting of interventions. The indigenous Batwa of southwestern Uganda have a disproportionate burden of malaria infection compared with their non-indigenous neighbors. To better understand the individual- and community-level determinants of malaria exposure, a seroepidemiological study was conducted in 10 local council cells in Kanungu District, Uganda, in April 2014. The Batwa had twice the odds of being seropositive to two Plasmodium falciparum-specific antigens, apical membrane antigen-1 and merozoite surface protein-119, compared with the non-indigenous Bakiga (odds ratio = 2.08, 95% confidence interval = 1.51-2.88). This trend was found irrespective of altitude level and after controlling for cell location. Seroconversion rates in the Batwa were more than twice those observed in the Bakiga. For the Batwa, multiple factors may be associated with higher exposure to malaria and antibody levels relative to their non-indigenous neighbors.
Assuntos
Formação de Anticorpos/imunologia , Malária Falciparum/imunologia , Adolescente , Adulto , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Malária Falciparum/epidemiologia , Masculino , Proteínas de Membrana/imunologia , Proteína 1 de Superfície de Merozoito/imunologia , Grupos Populacionais/estatística & dados numéricos , Proteínas de Protozoários/imunologia , Fatores de Risco , Estudos Soroepidemiológicos , Uganda/epidemiologia , Adulto JovemRESUMO
Anopheles mosquitoes were first recognised as the transmitters of human malaria in the late 19th Century and have been subject to a huge amount of research ever since. Yet there is still much that is unknown regarding the ecology, behaviour (collectively 'bionomics') and sometimes even the identity of many of the world's most prominent disease vectors, much less the within-species variation in their bionomics. Whilst malaria elimination remains an ambitious goal, it is becoming increasingly clear that knowledge of vector behaviour is needed to effectively target control measures. A database of bionomics data for the dominant vector species of malaria worldwide has been compiled from published peer-reviewed literature. The data identification and collation processes are described, together with the geo-positioning and quality control methods. This is the only such dataset in existence and provides a valuable resource to researchers and policy makers in this field.