Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
PLoS Pathog ; 12(2): e1005418, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26849049

RESUMO

Lassa virus is an enveloped, bi-segmented RNA virus and the most prevalent and fatal of all Old World arenaviruses. Virus entry into the host cell is mediated by a tripartite surface spike complex, which is composed of two viral glycoprotein subunits, GP1 and GP2, and the stable signal peptide. Of these, GP1 binds to cellular receptors and GP2 catalyzes fusion between the viral envelope and the host cell membrane during endocytosis. The molecular structure of the spike and conformational rearrangements induced by low pH, prior to fusion, remain poorly understood. Here, we analyzed the three-dimensional ultrastructure of Lassa virus using electron cryotomography. Sub-tomogram averaging yielded a structure of the glycoprotein spike at 14-Å resolution. The spikes are trimeric, cover the virion envelope, and connect to the underlying matrix. Structural changes to the spike, following acidification, support a viral entry mechanism dependent on binding to the lysosome-resident receptor LAMP1 and further dissociation of the membrane-distal GP1 subunits.


Assuntos
Glicoproteínas/metabolismo , Vírus Lassa/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Sinais Direcionadores de Proteínas , Proteínas do Envelope Viral/metabolismo , Animais , Chlorocebus aethiops , Glicoproteínas/química , Concentração de Íons de Hidrogênio , Vírus Lassa/química , Vírus Lassa/ultraestrutura , Proteínas de Membrana Lisossomal/química , Modelos Moleculares , Conformação Molecular , Complexos Multiproteicos , Ligação Proteica , Estrutura Terciária de Proteína , Células Vero , Proteínas do Envelope Viral/química , Vírion , Internalização do Vírus
2.
Cell Microbiol ; 18(3): 340-54, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26332529

RESUMO

Borna disease virus (BDV) is a non-segmented negative-stranded RNA virus that maintains a strictly neurotropic and persistent infection in affected end hosts. The primary target cells for BDV infection are brain cells, e.g. neurons and astrocytes. The exact mechanism of how infection is propagated between these cells and especially the role of the viral glycoprotein (GP) for cell-cell transmission, however, are still incompletely understood. Here, we use different cell culture systems, including rat primary astrocytes and mixed cultures of rat brain cells, to show that BDV primarily spreads through cell-cell contacts. We employ a highly stable and efficient peptidomimetic inhibitor to inhibit the furin-mediated processing of GP and demonstrate that cleaved and fusion-active GP is strictly necessary for the cell-to-cell spread of BDV. Together, our quantitative observations clarify the role of Borna disease virus-glycoprotein for viral dissemination and highlight the regulation of GP expression as a potential mechanism to limit viral spread and maintain persistence. These findings furthermore indicate that targeting host cell proteases might be a promising approach to inhibit viral GP activation and spread of infection.


Assuntos
Vírus da Doença de Borna/patogenicidade , Interações Hospedeiro-Patógeno/fisiologia , Glicoproteínas de Membrana/metabolismo , Animais , Astrócitos/virologia , Benzamidinas/farmacologia , Vírus da Doença de Borna/metabolismo , Encéfalo/citologia , Encéfalo/virologia , Fusão Celular , Células Cultivadas , Chlorocebus aethiops , Cães , Furina/antagonistas & inibidores , Células Madin Darby de Rim Canino/virologia , Oligopeptídeos/farmacologia , Ratos Endogâmicos Lew , Células Vero/virologia
3.
J Virol ; 88(1): 282-91, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24155384

RESUMO

Pigs are important natural hosts of influenza A viruses, and due to their susceptibility to swine, avian, and human viruses, they may serve as intermediate hosts supporting adaptation and genetic reassortment. Cleavage of the influenza virus surface glycoprotein hemagglutinin (HA) by host cell proteases is essential for viral infectivity. Most influenza viruses, including human and swine viruses, are activated at a monobasic HA cleavage site, and we previously identified TMPRSS2 and HAT to be relevant proteases present in human airways. We investigated the proteolytic activation of influenza viruses in primary porcine tracheal and bronchial epithelial cells (PTEC and PBEC, respectively). Human H1N1 and H3N2 viruses replicated efficiently in PTECs and PBECs, and viruses containing cleaved HA were released from infected cells. Moreover, the cells supported the proteolytic activation of HA at the stage of entry. We found that swine proteases homologous to TMPRSS2 and HAT, designated swTMPRSS2 and swAT, respectively, were expressed in several parts of the porcine respiratory tract. Both proteases cloned from primary PBECs were shown to activate HA with a monobasic cleavage site upon coexpression and support multicycle replication of influenza viruses. swAT was predominantly localized at the plasma membrane, where it was present as an active protease that mediated activation of incoming virus. In contrast, swTMPRSS2 accumulated in the trans-Golgi network, suggesting that it cleaves HA in this compartment. In conclusion, our data show that HA activation in porcine airways may occur by similar proteases and at similar stages of the viral life cycle as in human airways.


Assuntos
Brônquios/virologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Peptídeo Hidrolases/metabolismo , Traqueia/virologia , Animais , Sequência de Bases , Brônquios/citologia , Primers do DNA , Humanos , Proteólise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos , Traqueia/citologia , Replicação Viral
4.
J Virol ; 88(9): 4744-51, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24522916

RESUMO

UNLABELLED: Cleavage of the hemagglutinin (HA) by host proteases is essential for the infectivity of influenza viruses. Here, we analyzed the role of the serine protease TMPRSS2, which activates HA in the human respiratory tract, in pathogenesis in a mouse model. Replication of the human H7N9 isolate A/Anhui/1/13 and of human H1N1 and H3N2 viruses was compared in TMPRSS2 knockout (TMPRSS2(-/-)) and wild-type (WT) mice. Knockout of TMPRSS2 expression inhibited H7N9 influenza virus replication in explants of murine tracheas, bronchi, and lungs. H1N1 virus replication was also strongly suppressed in airway explants of TMPRSS2(-/-) mice, while H3N2 virus replication was only marginally affected. H7N9 and H1N1 viruses were apathogenic in TMPRSS2(-/-) mice, whereas WT mice developed severe disease with mortality rates of 100% and 20%, respectively. In contrast, all H3N2 infected TMPRSS2(-/-) and WT mice succumbed to lethal infection. Cleavage analysis showed that H7 and H1 are efficiently activated by TMPRSS2, whereas H3 is less susceptible to the protease. Our data demonstrate that TMPRSS2 is a host factor that is essential for pneumotropism and pathogenicity of H7N9 and H1N1 influenza virus in mice. In contrast, replication of H3N2 virus appears to depend on another, not yet identified protease, supporting the concept that human influenza viruses differ in protease specificity. IMPORTANCE: Cleavage of the hemagglutinin (HA) by host proteases is essential for the infectivity of influenza virus, but little is known about its relevance for pathogenesis in mammals. Here, we show that knockout mice that do not express the HA-activating protease TMPRSS2 are resistant to pulmonary disease with lethal outcome when infected with influenza A viruses of subtypes H7N9 and H1N1, whereas they are not protected from lethal H3N2 virus infection. These findings demonstrate that human influenza viruses differ in protease specificity, and that expression of the appropriate protease in respiratory tissues is essential for pneumotropism and pathogenicity. Our observations also demonstrate that HA-activating proteases and in particular TMPRSS2 are promising targets for influenza therapy.


Assuntos
Interações Hospedeiro-Patógeno , Subtipo H7N9 do Vírus da Influenza A/fisiologia , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Pulmão/virologia , Serina Endopeptidases/metabolismo , Tropismo Viral , Estruturas Animais/virologia , Animais , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Serina Endopeptidases/genética , Análise de Sobrevida , Traqueia/virologia , Virulência
5.
Curr Top Microbiol Immunol ; 385: 3-34, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25031010

RESUMO

The hemagglutinin (HA) is a prime determinant of the pathogenicity of influenza A viruses. It initiates infection by binding to cell surface receptors and by inducing membrane fusion. The fusion capacity of HA depends on cleavage activation by host proteases, and it has long been known that highly pathogenic avian influenza viruses displaying a multibasic cleavage site differ in protease sensitivity from low pathogenic avian and mammalian influenza viruses with a monobasic cleavage site. Evidence is increasing that there are also variations in proteolytic activation among the viruses with a monobasic cleavage site, and several proteases have been identified recently that activate these viruses in a natural setting. Differences in protease sensitivity of HA and in tissue specificity of the enzymes are important determinants for virus tropism in the respiratory tract and for systemic spread of infection. Protease inhibitors that interfere with cleavage activation have the potential to be used for antiviral therapy and attenuated viruses have been generated by mutation of the cleavage site that can be used for the development of inactivated and live vaccines. It has long been known that human and avian influenza viruses differ in their specificity for sialic acid-containing cell receptors, and it is now clear that human tissues contain also receptors for avian viruses. Differences in receptor-binding specificity of seasonal and zoonotic viruses and differential expression of receptors for these viruses in the human respiratory tract account, at least partially, for the severity of disease. Receptor binding and fusion activation are modulated by HA glycosylation, and interaction of the glycans of HA with cellular lectins also affects virus infectivity. Interestingly, some of the mechanisms underlying pathogenicity are determinants of host range and transmissibility, as well.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/metabolismo , Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Influenza Humana/virologia , Infecções por Orthomyxoviridae/virologia , Animais , Aves , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A/genética , Influenza Aviária/genética , Influenza Aviária/metabolismo , Influenza Humana/genética , Influenza Humana/metabolismo , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/metabolismo , Receptores Virais/genética , Tropismo Viral
6.
Arch Virol ; 160(2): 621-32, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25449305

RESUMO

Knowledge of bornaviruses has expanded considerably during the last decade. A possible reservoir of mammalian Borna disease virus has been identified, divergent bornaviruses have been detected in birds and reptiles, and endogenous bornavirus-like elements have been discovered in the genomes of vertebrates of several species. Previous sequence comparisons and alignments have indicated that the members of the current family Bornaviridae are phylogenetically diverse and are not adequately classified in the existing bornavirus taxonomy supported by the International Committee on Taxonomy of Viruses (ICTV). We provide an update of these analyses and describe their implications for taxonomy. We propose retaining the family name Bornaviridae and the genus Bornavirus but reorganizing species classification. PAirwise Sequence Comparison (PASC) of bornavirus genomes and Basic Local Alignment Search Tool (BLAST) comparison of genomic and protein sequences, in combination with other already published phylogenetic analyses and known biological characteristics of bornaviruses, indicate that this genus should include at least five species: Mammalian 1 bornavirus (classical Borna disease virus and divergent Borna disease virus isolate No/98), Psittaciform 1 bornavirus (avian/psittacine bornaviruses 1, 2, 3, 4, 7), Passeriform 1 bornavirus (avian/canary bornaviruses C1, C2, C3, LS), Passeriform 2 bornavirus (estrildid finch bornavirus EF), and Waterbird 1 bornavirus (avian bornavirus 062CG). This classification is also in line with biological characteristics of these viruses and their vertebrate hosts. A snake bornavirus, proposed to be named Loveridge's garter snake virus 1, should be classified as a member of an additional species (Elapid 1 bornavirus), unassigned to a genus, in the family Bornaviridae. Avian bornaviruses 5, 6, MALL, and another "reptile bornavirus" ("Gaboon viper virus") should stay unclassified until further information becomes available. Finally, we propose new virus names and abbreviations when necessary to achieve clear differentiation and unique identification.


Assuntos
Doença de Borna/virologia , Bornaviridae/classificação , Reservatórios de Doenças/virologia , Genoma Viral/genética , Sequência de Aminoácidos , Animais , Bornaviridae/genética , Filogenia , Alinhamento de Sequência
7.
J Virol ; 87(3): 1811-20, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23192872

RESUMO

Influenza A viruses of the subtype H9N2 circulate worldwide and have become highly prevalent in poultry in many countries. Moreover, they are occasionally transmitted to humans, raising concern about their pandemic potential. Influenza virus infectivity requires cleavage of the surface glycoprotein hemagglutinin (HA) at a distinct cleavage site by host cell proteases. H9N2 viruses vary remarkably in the amino acid sequence at the cleavage site, and many isolates from Asia and the Middle East possess the multibasic motifs R-S-S-R and R-S-R-R, but are not activated by furin. Here, we investigated proteolytic activation of the early H9N2 isolate A/turkey/Wisconsin/1/66 (H9-Wisc) and two recent Asian isolates, A/quail/Shantou/782/00 (H9-782) and A/quail/Shantou/2061/00 (H9-2061), containing mono-, di-, and tribasic HA cleavage sites, respectively. All H9N2 isolates were activated by human proteases TMPRSS2 (transmembrane protease, serine S1 member 2) and HAT (human airway trypsin-like protease). Interestingly, H9-782 and H9-2061 were also activated by matriptase, a protease widely expressed in most epithelia with high expression levels in the kidney. Nephrotropism of H9N2 viruses has been observed in chickens, and here we found that H9-782 and H9-2061 were proteolytically activated in canine kidney (MDCK-II) and chicken embryo kidney (CEK) cells, whereas H9-Wisc was not. Virus activation was inhibited by peptide-mimetic inhibitors of matriptase, strongly suggesting that matriptase is responsible for HA cleavage in these kidney cells. Our data demonstrate that H9N2 viruses with R-S-S-R or R-S-R-R cleavage sites are activated by matriptase in addition to HAT and TMPRSS2 and, therefore, can be activated in a wide range of tissues what may affect virus spread, tissue tropism and pathogenicity.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Influenza A Subtipo H9N2/fisiologia , Serina Endopeptidases/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Galinhas , Cães , Humanos
8.
Cell Microbiol ; 15(2): 315-34, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23279019

RESUMO

The small matrix protein Z of arenaviruses has been identified as the main driving force to promote viral particle production at the plasma membrane. Although multiple functions of Z in the arenaviral life cycle have been uncovered, the mechanism of intracellular transport of Z to the site of virus budding is poorly understood and cellular motor proteins that mediate Z trafficking remain to be identified. In the present study, we report that the Z protein of the Old World arenavirus Lassa virus (LASV) interacts with the kinesin family member 13A (KIF13A), a plus-end-directed microtubule-dependent motor protein. Plasmid-driven overexpression of KIF13A results in relocalization of Z to the cell periphery, while functional blockage of endogenous KIF13A by overexpression of a dominant-negative mutant or KIF13A-specific siRNA causes a perinuclearaccumulation and decreased production of both Z-induced virus-like particles and infectious LASV. The interaction of KIF13A with Z proteins from both Old and New World arenaviruses suggests a conserved intracellular transport mechanism. In contrast, the intracellular distribution of the matrix proteins of prototypic members of the paramyxo- and rhabdovirus family is independent of KIF13A. In summary, our studies identify for the first time a molecular motor protein as a critical mediator for intracellular microtubule-dependent transport of arenavirus matrix proteins.


Assuntos
Proteínas de Transporte/metabolismo , Cinesinas/metabolismo , Vírus Lassa/fisiologia , Microtúbulos/metabolismo , Proteínas da Matriz Viral/metabolismo , Liberação de Vírus/fisiologia , Animais , Proteínas de Transporte/genética , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/virologia , Chlorocebus aethiops , Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Rim/patologia , Rim/virologia , Cinesinas/antagonistas & inibidores , Cinesinas/genética , Fígado/patologia , Fígado/virologia , Microtúbulos/virologia , Ligação Proteica , Transporte Proteico , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA , Células Vero , Proteínas da Matriz Viral/genética
9.
Biochem J ; 452(2): 331-43, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23527573

RESUMO

TMPRSS2 (transmembrane serine proteinase 2) is a multidomain type II transmembrane serine protease that cleaves the surface glycoprotein HA (haemagglutinin) of influenza viruses with a monobasic cleavage site, which is a prerequisite for virus fusion and propagation. Furthermore, it activates the fusion protein F of the human metapneumovirus and the spike protein S of the SARS-CoV (severe acute respiratory syndrome coronavirus). Increased TMPRSS2 expression was also described in several tumour entities. Therefore TMPRSS2 emerged as a potential target for drug design. The catalytic domain of TMPRSS2 was expressed in Escherichia coli and used for an inhibitor screen with previously synthesized inhibitors of various trypsin-like serine proteases. Two inhibitor types were identified which inhibit TMPRSS2 in the nanomolar range. The first series comprises substrate analogue inhibitors containing a 4-amidinobenzylamide moiety at the P1 position, whereby some of these analogues possess inhibition constants of approximately 20 nM. An improved potency was found for a second type derived from sulfonylated 3-amindinophenylalanylamide derivatives. The most potent derivative of this series inhibits TMPRSS2 with a K(i) value of 0.9 nM and showed an efficient blockage of influenza virus propagation in human airway epithelial cells. On the basis of the inhibitor studies, a series of new fluorogenic substrates containing a D-arginine residue at the P3 position was synthesized, some of them were efficiently cleaved by TMPRSS2.


Assuntos
Antivirais/farmacologia , Desenho de Fármacos , Vírus da Influenza A/efeitos dos fármacos , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/farmacologia , Ativação Viral/efeitos dos fármacos , Antivirais/síntese química , Domínio Catalítico/efeitos dos fármacos , Domínio Catalítico/genética , Linhagem Celular , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Serina Endopeptidases/biossíntese , Inibidores de Serina Proteinase/genética , Ativação Viral/genética
10.
J Biol Chem ; 287(26): 21992-2003, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22539349

RESUMO

Optimization of our previously described peptidomimetic furin inhibitors was performed and yielded several analogs with a significantly improved activity. The most potent compounds containing an N-terminal 4- or 3-(guanidinomethyl)phenylacetyl residue inhibit furin with K(i) values of 16 and 8 pM, respectively. These analogs inhibit other proprotein convertases, such as PC1/3, PC4, PACE4, and PC5/6, with similar potency, whereas PC2, PC7, and trypsin-like serine proteases are poorly affected. Incubation of selected compounds with Madin-Darby canine kidney cells over a period of 96 h revealed that they exhibit great stability, making them suitable candidates for further studies in cell culture. Two of the most potent derivatives were used to inhibit the hemagglutinin cleavage and viral propagation of a highly pathogenic avian H7N1 influenza virus strain. The treatment with inhibitor 24 (4-(guanidinomethyl)phenylacetyl-Arg-Val-Arg-4-amidinobenzylamide) resulted in significantly delayed virus propagation compared with an inhibitor-free control. The same analog was also effective in inhibiting Shiga toxin activation in HEp-2 cells. This antiviral effect, as well as the protective effect against a bacterial toxin, suggests that inhibitors of furin or furin-like proprotein convertases could represent promising lead structures for future drug development, in particular for the treatment of infectious diseases.


Assuntos
Doenças Transmissíveis/tratamento farmacológico , Furina/antagonistas & inibidores , Pró-Proteína Convertases/antagonistas & inibidores , Animais , Benzamidinas/química , Química Farmacêutica/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cães , Relação Dose-Resposta a Droga , Desenho de Fármacos , Furina/química , Hemaglutininas/química , Humanos , Cinética , Micelas , Modelos Químicos , Oligopeptídeos/química , Peptídeo Hidrolases/química , Peptídeos/química , Inibidores de Proteases/farmacologia , Saccharomyces cerevisiae/metabolismo , Toxina Shiga/química
11.
Arch Virol ; 158(9): 1895-905, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23553456

RESUMO

The Lassa virus nucleoprotein (NP) is a multifunctional protein that plays an essential role in many aspects of the viral life cycle, including RNA encapsidation, viral transcription and replication, recruitment of ribonucleoprotein complexes to viral budding sites, and inhibition of the host cell interferon response. While it is known that NP is capable of forming oligomers, both the oligomeric state of NP in mammalian cells and the significance of NP oligomerization for its various functions remain unclear. Here, we demonstrate that Lassa virus NP solely forms trimers upon expression in mammalian cells. Using a minigenome assay we show that mutants that are not able to form stable trimers are no longer functional during transcription and/or replication of the minigenome, indicating that NP trimerization is essential for transcription and/or replication of the viral genome. However, mutations leading to destabilization of the NP trimer did not impact the incorporation of NP into virus-like particles or its ability to suppress interferon-induced gene expression, two important functions of arenavirus NP.


Assuntos
Arenavirus/metabolismo , Nucleoproteínas/metabolismo , Sequência de Aminoácidos , Arenavirus/genética , Linhagem Celular Tumoral , Células HEK293 , Humanos , Vírus Lassa/genética , Vírus Lassa/metabolismo , Dados de Sequência Molecular , Nucleoproteínas/química , Nucleoproteínas/genética , Multimerização Proteica , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
12.
Bioessays ; 33(3): 180-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21319184

RESUMO

The emergence of the 2009 H1N1 virus pandemic was unexpected, since it had been predicted that the next pandemic would be caused by subtype H5N1. We also had to learn that a pandemic does not necessarily require the introduction of a new virus subtype into the human population, but that it may result from antigenic shift within the same subtype. The new variant was derived from human and animal viruses by genetic reassortment in the pig, supporting the concept that this animal is the mixing vessel for the generation of new human influenza viruses. Although it is generally believed that the 2009 outbreak was mild, there have been severe cases particularly among the young and the middle-aged. Pathogenicity and host range are determined to a large extent by the polymerase, the haemagglutinin and the NS1 protein of influenza A viruses. There is evidence that mutations of these proteins may change the pathogenicity of the new virus.


Assuntos
Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Pandemias , Vírus Reordenados/patogenicidade , Animais , Aves , Especificidade de Hospedeiro , Humanos , Vírus da Influenza A Subtipo H2N2/genética , Vírus da Influenza A Subtipo H2N2/patogenicidade , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/patogenicidade , Virus da Influenza A Subtipo H5N1/genética , Vírus Reordenados/genética
13.
J Virol ; 85(4): 1554-62, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21123387

RESUMO

Influenza A viruses constitute a major and ongoing global public health concern. Current antiviral strategies target viral gene products; however, the emergence of drug-resistant viruses highlights the need for novel antiviral approaches. Cleavage of the influenza virus hemagglutinin (HA) by host cell proteases is crucial for viral infectivity and therefore presents a potential drug target. Peptide-conjugated phosphorodiamidate morpholino oligomers (PPMO) are single-stranded-DNA-like antisense agents that readily enter cells and can act as antisense agents by sterically blocking cRNA. Here, we evaluated the effect of PPMO targeted to regions of the pre-mRNA or mRNA of the HA-cleaving protease TMPRSS2 on proteolytic activation and spread of influenza viruses in human Calu-3 airway epithelial cells. We found that treatment of cells with a PPMO (T-ex5) designed to interfere with TMPRSS2 pre-mRNA splicing resulted in TMPRSS2 mRNA lacking exon 5 and consequently the expression of a truncated and enzymatically inactive form of TMPRSS2. Altered splicing of TMPRSS2 mRNA by the T-ex5 PPMO prevented HA cleavage in different human seasonal and pandemic influenza A viruses and suppressed viral titers by 2 to 3 log(10) units, strongly suggesting that TMPRSS2 is responsible for HA cleavage in Calu-3 airway cells. The data indicate that PPMO provide a useful reagent for investigating HA-activating proteases and may represent a promising strategy for the development of novel therapeutics to address influenza infections.


Assuntos
Células Epiteliais/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/patogenicidade , Metaloendopeptidases/metabolismo , Morfolinas/farmacologia , Serina Endopeptidases/metabolismo , Animais , Brônquios/citologia , Linhagem Celular , Células Cultivadas , Embrião de Galinha , Cães , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/enzimologia , Vírus da Influenza A Subtipo H7N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H7N1/enzimologia , Vírus da Influenza A/enzimologia , Morfolinos , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Proc Natl Acad Sci U S A ; 106(10): 3710-5, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19237566

RESUMO

Borna disease virus (BDV) is a neurotropic enveloped RNA virus that causes a noncytolytic, persistent infection of the central nervous system in mammals. BDV belongs to the order Mononegavirales, which also includes the negative-strand RNA viruses (NSVs) Ebola, Marburg, vesicular stomatitis, rabies, mumps, and measles. BDV-M, the matrix protein (M-protein) of BDV, is the smallest M-protein (16.2 kDa) among the NSVs. M-proteins play a critical role in virus assembly and budding, mediating the interaction between the viral capsid, envelope, and glycoprotein spikes, and are as such responsible for the structural stability and individual form of virus particles. Here, we report the 3D structure of BDV-M, a full-length M-protein structure from a nonsegmented RNA NSV. The BDV-M monomer exhibits structural similarity to the N-terminal domain of the Ebola M-protein (VP40), while the surface charge of the tetramer provides clues to the membrane association of BDV-M. Additional electron density in the crystal reveals the presence of bound nucleic acid, interpreted as cytidine-5'-monophosphate. The heterologously expressed BDV-M copurifies with and protects ssRNA oligonucleotides of a median length of 16 nt taken up from the expression host. The results presented here show that BDV-M would be able to bind RNA and lipid membranes simultaneously, expanding the repertoire of M-protein functionalities.


Assuntos
Vírus da Doença de Borna/química , RNA Viral/química , Proteínas da Matriz Viral/química , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Nucleotídeos/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Eletricidade Estática , Propriedades de Superfície
15.
J Virol ; 84(2): 983-92, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19889753

RESUMO

Mature glycoprotein spikes are inserted in the Lassa virus envelope and consist of the distal subunit GP-1, the transmembrane-spanning subunit GP-2, and the signal peptide, which originate from the precursor glycoprotein pre-GP-C by proteolytic processing. In this study, we analyzed the oligomeric structure of the viral surface glycoprotein. Chemical cross-linking studies of mature glycoprotein spikes from purified virus revealed the formation of trimers. Interestingly, sucrose density gradient analysis of cellularly expressed glycoprotein showed that in contrast to trimeric mature glycoprotein complexes, the noncleaved glycoprotein forms monomers and oligomers spanning a wide size range, indicating that maturation cleavage of GP by the cellular subtilase SKI-1/S1P is critical for formation of the correct oligomeric state. To shed light on a potential relation between cholesterol and GP trimer stability, we performed cholesterol depletion experiments. Although depletion of cholesterol had no effect on trimerization of the glycoprotein spike complex, our studies revealed that the cholesterol content of the viral envelope is important for the infectivity of Lassa virus. Analyses of the distribution of viral proteins in cholesterol-rich detergent-resistant membrane areas showed that Lassa virus buds from membrane areas other than those responsible for impaired infectivity due to cholesterol depletion of lipid rafts. Thus, derivation of the viral envelope from cholesterol-rich membrane areas is not a prerequisite for the impact of cholesterol on virus infectivity.


Assuntos
Colesterol/farmacologia , Glicoproteínas , Vírus Lassa/metabolismo , Vírus Lassa/fisiologia , Proteínas do Envelope Viral , Replicação Viral , Animais , Linhagem Celular , Centrifugação com Gradiente de Concentração , Chlorocebus aethiops , Colesterol/metabolismo , Cricetinae , Reagentes de Ligações Cruzadas , Dimerização , Glicoproteínas/química , Glicoproteínas/metabolismo , Humanos , Vírus Lassa/efeitos dos fármacos , Vírus Lassa/patogenicidade , Conformação Proteica , Células Vero , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo
16.
J Virol ; 84(7): 3178-88, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20071570

RESUMO

The epithelium plays a key role in the spread of Lassa virus. Transmission from rodents to humans occurs mainly via inhalation or ingestion of droplets, dust, or food contaminated with rodent urine. Here, we investigated Lassa virus infection in cultured epithelial cells and subsequent release of progeny viruses. We show that Lassa virus enters polarized Madin-Darby canine kidney (MDCK) cells mainly via the basolateral route, consistent with the basolateral localization of the cellular Lassa virus receptor alpha-dystroglycan. In contrast, progeny virus was efficiently released from the apical cell surface. Further, we determined the roles of the glycoprotein, matrix protein, and nucleoprotein in directed release of nascent virus. To do this, a virus-like-particle assay was developed in polarized MDCK cells based on the finding that, when expressed individually, both the glycoprotein GP and matrix protein Z form virus-like particles. We show that GP determines the apical release of Lassa virus from epithelial cells, presumably by recruiting the matrix protein Z to the site of virus assembly, which is in turn essential for nucleocapsid incorporation into virions.


Assuntos
Células Epiteliais/virologia , Vírus Lassa/fisiologia , Proteínas Virais/fisiologia , Internalização do Vírus , Animais , Células CHO , Polaridade Celular , Células Cultivadas , Cricetinae , Cricetulus , Glicoproteínas/análise , Glicoproteínas/fisiologia , Humanos , Nucleoproteínas/análise , Nucleoproteínas/fisiologia , Proteínas da Matriz Viral/análise , Proteínas da Matriz Viral/fisiologia , Vírion/fisiologia
17.
J Virol ; 84(11): 5605-14, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20237084

RESUMO

Proteolytic cleavage of the influenza virus surface glycoprotein hemagglutinin (HA) by host cell proteases is crucial for infectivity and virus spread. The proteases HAT (human airway trypsin-like protease) and TMPRSS2 (transmembrane protease serine S1 member 2) known to be present in the human airways were previously identified as proteases that cleave HA. We studied subcellular localization of HA cleavage and cleavage inhibition of seasonal influenza virus A/Memphis/14/96 (H1N1) and pandemic virus A/Hamburg/5/2009 (H1N1) in MDCK cells that express HAT and TMPRSS2 under doxycycline-induced transcriptional activation. We made the following observations: (i) HA is cleaved by membrane-bound TMPRSS2 and HAT and not by soluble forms released into the supernatant; (ii) HAT cleaves newly synthesized HA before or during the release of progeny virions and HA of incoming viruses prior to endocytosis at the cell surface, whereas TMPRSS2 cleaves newly synthesized HA within the cell and is not able to support the proteolytic activation of HA of incoming virions; and (iii) cleavage activation of HA and virus spread in TMPRSS2- and HAT-expressing cells can be suppressed by peptide mimetic protease inhibitors. The further development of these inhibitors could lead to new drugs for influenza treatment.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H1N1/patogenicidade , Inibidores de Proteases/farmacologia , Serina Endopeptidases/metabolismo , Animais , Linhagem Celular , Cães , Doxiciclina/farmacologia , Humanos , Proteínas de Membrana/metabolismo , Serina Endopeptidases/análise , Ativação Transcricional/efeitos dos fármacos , Vírion
18.
J Virol ; 84(10): 5089-96, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20219906

RESUMO

Host cellular proteases induce influenza virus entry into cells by cleaving the viral surface envelope glycoprotein hemagglutinin (HA). However, details on the cellular proteases involved in this event are not fully available. We report here that ubiquitous type II transmembrane serine proteases, MSPL and its splice variant TMPRSS13, are novel candidates for proteases processing HA proteins of highly pathogenic avian influenza (HPAI) viruses, apart from the previously identified furin and proprotein convertases 5 and 6. HAs from all HPAI virus H5 and H7 strains have one of two cleavage site motifs, the R-X-K/R-R motif with R at position P4 and the K-K/R-K/T-R motif with K at position P4. In studies of synthetic 14-residue HPAI virus HA peptides with these cleavage site motifs, furin preferentially cleaved only HA peptides with the R-K-K-R motif in the presence of calcium and not peptides with the other motif, whereas MSPL and TMPRSS13 cleaved both types of HA peptides (those with the R/K-K-K-R motif) efficiently in the absence of calcium. Full-length recombinant HPAI virus HA with the K-K-K-R cleavage motif exhibited poor susceptibility to cleavage in the absence of MSPL or TMPRSS13 and the presence of furin in infected cells, but it was converted to mature HA subunits in transfected cells expressing MSPL or TMPRSS13, with membrane-fused giant-cell formation. This conversion and membrane fusion were suppressed by inhibitors of MSPL and TMPRSS13. Furthermore, infection with and multiplication of genetically modified live HPAI virus A/Crow/Kyoto/53/2004 (H5N1) with the K-K-K-R cleavage site motif were detected only in MSPL- and TMPRSS13-expressing cells.


Assuntos
Hemaglutininas Virais/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Influenza A/fisiologia , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Internalização do Vírus , Replicação Viral , Linhagem Celular , Humanos , Vírus da Influenza A/patogenicidade
19.
Bioorg Med Chem Lett ; 21(16): 4860-4, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21741839

RESUMO

A series of substrate analogue inhibitors of the serine protease HAT, containing a 4-amidinobenzylamide moiety as the P1 residue, was prepared. The most potent compounds possess a basic amino acid in the d-configuration as P3 residue. Whereas inhibitor 4 (K(i) 13 nM) containing proline as the P2 residue completely lacks selectivity, incorporation of norvaline leads to a potent inhibitor (15, K(i) 15 nM) with improved selectivity for HAT in comparison to the coagulation proteases thrombin and factor Xa or the fibrinolytic plasmin. Selected inhibitors were able to suppress influenza virus replication in a HAT-expressing MDCK cell model.


Assuntos
Amidinas/farmacologia , Antivirais/farmacologia , Compostos de Benzil/farmacologia , Dipeptídeos/farmacologia , Orthomyxoviridae/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Amidinas/síntese química , Amidinas/química , Antivirais/síntese química , Antivirais/química , Compostos de Benzil/síntese química , Compostos de Benzil/química , Células Cultivadas , Dipeptídeos/síntese química , Dipeptídeos/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Orthomyxoviridae/genética , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Estereoisomerismo , Relação Estrutura-Atividade , Especificidade por Substrato , Replicação Viral/efeitos dos fármacos
20.
Life Sci Alliance ; 3(9)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32703818

RESUMO

The novel emerged SARS-CoV-2 has rapidly spread around the world causing acute infection of the respiratory tract (COVID-19) that can result in severe disease and lethality. For SARS-CoV-2 to enter cells, its surface glycoprotein spike (S) must be cleaved at two different sites by host cell proteases, which therefore represent potential drug targets. In the present study, we show that S can be cleaved by the proprotein convertase furin at the S1/S2 site and the transmembrane serine protease 2 (TMPRSS2) at the S2' site. We demonstrate that TMPRSS2 is essential for activation of SARS-CoV-2 S in Calu-3 human airway epithelial cells through antisense-mediated knockdown of TMPRSS2 expression. Furthermore, SARS-CoV-2 replication was also strongly inhibited by the synthetic furin inhibitor MI-1851 in human airway cells. In contrast, inhibition of endosomal cathepsins by E64d did not affect virus replication. Combining various TMPRSS2 inhibitors with furin inhibitor MI-1851 produced more potent antiviral activity against SARS-CoV-2 than an equimolar amount of any single serine protease inhibitor. Therefore, this approach has considerable therapeutic potential for treatment of COVID-19.


Assuntos
Células Epiteliais Alveolares/virologia , Betacoronavirus/fisiologia , Furina/genética , Serina Endopeptidases/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Epiteliais Alveolares/citologia , Animais , Sítios de Ligação , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Proteólise , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Células Vero , Internalização do Vírus , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA