Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 102(5): 845-857, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29706347

RESUMO

Loss of expression of ACTN3, due to homozygosity of the common null polymorphism (p.Arg577X), is underrepresented in elite sprint/power athletes and has been associated with reduced muscle mass and strength in humans and mice. To investigate ACTN3 gene dosage in performance and whether expression could enhance muscle force, we performed meta-analysis and expression studies. Our general meta-analysis using a Bayesian random effects model in elite sprint/power athlete cohorts demonstrated a consistent homozygous-group effect across studies (per allele OR = 1.4, 95% CI 1.3-1.6) but substantial heterogeneity in heterozygotes. In mouse muscle, rAAV-mediated gene transfer overexpressed and rescued α-actinin-3 expression. Contrary to expectation, in vivo "doping" of ACTN3 at low to moderate doses demonstrated an absence of any change in function. At high doses, ACTN3 is toxic and detrimental to force generation, to demonstrate gene doping with supposedly performance-enhancing isoforms of sarcomeric proteins can be detrimental for muscle function. Restoration of α-actinin-3 did not enhance muscle mass but highlighted the primary role of α-actinin-3 in modulating muscle metabolism with altered fatiguability. This is the first study to express a Z-disk protein in healthy skeletal muscle and measure the in vivo effect. The sensitive balance of the sarcomeric proteins and muscle function has relevant implications in areas of gene doping in performance and therapy for neuromuscular disease.


Assuntos
Actinina/genética , Músculo Esquelético/fisiologia , Anaerobiose , Animais , Animais Recém-Nascidos , Atletas , Calcineurina/metabolismo , Dependovirus/metabolismo , Regulação para Baixo/genética , Estudo de Associação Genômica Ampla , Heterozigoto , Homozigoto , Humanos , Camundongos Endogâmicos C57BL , Fadiga Muscular , Fibras Musculares Esqueléticas/metabolismo , Tamanho do Órgão , Oxirredução
2.
Hum Mol Genet ; 25(5): 866-77, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26681802

RESUMO

A common null polymorphism (R577X) in ACTN3 causes α-actinin-3 deficiency in ∼ 18% of the global population. There is no associated disease phenotype, but α-actinin-3 deficiency is detrimental to sprint and power performance in both elite athletes and the general population. However, despite considerable investigation to date, the functional consequences of heterozygosity for ACTN3 are unclear. A subset of studies have shown an intermediate phenotype in 577RX individuals, suggesting dose-dependency of α-actinin-3, while others have shown no difference between 577RR and RX genotypes. Here, we investigate the effects of α-actinin-3 expression level by comparing the muscle phenotypes of Actn3(+/-) (HET) mice to Actn3(+/+) [wild-type (WT)] and Actn3(-/-) [knockout (KO)] littermates. We show reduction in α-actinin-3 mRNA and protein in HET muscle compared with WT, which is associated with dose-dependent up-regulation of α-actinin-2, z-band alternatively spliced PDZ-motif and myotilin at the Z-line, and an incremental shift towards oxidative metabolism. While there is no difference in force generation, HET mice have an intermediate endurance capacity compared with WT and KO. The R577X polymorphism is associated with changes in ACTN3 expression consistent with an additive model in the human genotype-tissue expression cohort, but does not influence any other muscle transcripts, including ACTN2. Overall, ACTN3 influences sarcomeric composition in a dose-dependent fashion in mouse skeletal muscle, which translates directly to function. Variance in fibre type between biopsies likely masks this phenomenon in human skeletal muscle, but we suggest that an additive model is the most appropriate for use in testing ACTN3 genotype associations.


Assuntos
Actinina/genética , Dosagem de Genes , Músculo Esquelético/metabolismo , Resistência Física/genética , Polimorfismo Genético , Actinina/deficiência , Actinina/metabolismo , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Heterozigoto , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Condicionamento Físico Animal , Sarcômeros/metabolismo
3.
Physiol Genomics ; 48(2): 82-92, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26395598

RESUMO

The extremes of exercise capacity and health are considered a complex interplay between genes and the environment. In general, the study of animal models has proven critical for deep mechanistic exploration that provides guidance for focused and hypothesis-driven discovery in humans. Hypotheses underlying molecular mechanisms of disease and gene/tissue function can be tested in rodents to generate sufficient evidence to resolve and progress our understanding of human biology. Here we provide examples of three alternative uses of rodent models that have been applied successfully to advance knowledge that bridges our understanding of the connection between exercise capacity and health status. First we review the strong association between exercise capacity and all-cause morbidity and mortality in humans through artificial selection on low and high exercise performance in the rat and the consequent generation of the "energy transfer hypothesis." Second we review specific transgenic and knockout mouse models that replicate the human disease condition and performance. This includes human glycogen storage diseases (McArdle and Pompe) and α-actinin-3 deficiency. Together these rodent models provide an overview of the advancements of molecular knowledge required for clinical translation. Continued study of these models in conjunction with human association studies will be critical to resolving the complex gene-environment interplay linking exercise capacity, health, and disease.


Assuntos
Modelos Animais de Doenças , Exercício Físico , Modelos Animais , Actinina/deficiência , Animais , Doença de Depósito de Glicogênio Tipo II/fisiopatologia , Doença de Depósito de Glicogênio Tipo V/fisiopatologia , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Condicionamento Físico Animal , Ratos
4.
Br J Sports Med ; 49(23): 1486-91, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26582191

RESUMO

The general consensus among sport and exercise genetics researchers is that genetic tests have no role to play in talent identification or the individualised prescription of training to maximise performance. Despite the lack of evidence, recent years have witnessed the rise of an emerging market of direct-to-consumer marketing (DTC) tests that claim to be able to identify children's athletic talents. Targeted consumers include mainly coaches and parents. There is concern among the scientific community that the current level of knowledge is being misrepresented for commercial purposes. There remains a lack of universally accepted guidelines and legislation for DTC testing in relation to all forms of genetic testing and not just for talent identification. There is concern over the lack of clarity of information over which specific genes or variants are being tested and the almost universal lack of appropriate genetic counselling for the interpretation of the genetic data to consumers. Furthermore independent studies have identified issues relating to quality control by DTC laboratories with different results being reported from samples from the same individual. Consequently, in the current state of knowledge, no child or young athlete should be exposed to DTC genetic testing to define or alter training or for talent identification aimed at selecting gifted children or adolescents. Large scale collaborative projects, may help to develop a stronger scientific foundation on these issues in the future.


Assuntos
Aptidão/fisiologia , Desempenho Atlético/fisiologia , Triagem e Testes Direto ao Consumidor/normas , Testes Genéticos/normas , Aptidão/ética , Consenso , Enganação , Triagem e Testes Direto ao Consumidor/ética , Triagem e Testes Direto ao Consumidor/legislação & jurisprudência , Medicina Baseada em Evidências , Testes Genéticos/ética , Testes Genéticos/legislação & jurisprudência , Genômica , Humanos , Medicina Esportiva/ética , Medicina Esportiva/legislação & jurisprudência , Medicina Esportiva/normas
6.
Front Neurol ; 14: 1055639, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36779065

RESUMO

Recessive pathogenic variants in the laminin subunit alpha 2 (LAMA2) gene cause a spectrum of disease ranging from severe congenital muscular dystrophy to later-onset limb girdle muscular dystrophy (LGMDR23). The phenotype of LGMDR23 is characterized by slowly progressive proximal limb weakness, contractures, raised creatine kinase, and sometimes distinctive cerebral white matter changes and/or epilepsy. We present two siblings, born to consanguineous parents, who developed adult-onset LGMDR23 associated with typical cerebral white matter changes and who both later developed dementia. The male proband also had epilepsy and upper motor neuron signs when he presented at age 72. Merosin immunohistochemistry and Western blot on muscle biopsies taken from both subjects was normal. Whole exome sequencing revealed a previously unreported homozygous missense variant in LAMA2 [Chr6(GRCh38):g.129297734G>A; NM_000426.3:c.2906G>A; p.(Cys969Tyr)] in the proband. The same homozygous LAMA2 variant was confirmed by Sanger sequencing in the proband's affected sister. These findings expand the genotypic and phenotypic spectrum of LGMDR23.

7.
Front Neurol ; 13: 868655, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463132

RESUMO

Here we report on two unrelated adult patients presenting with Limb girdle muscular dystrophy who were found to have novel variants in ANO5. Both patients had prominent weakness of their proximal lower limbs with mild weakness of elbow flexion and markedly elevated creatine kinase. Next generation sequencing using a custom-designed neuromuscular panel was performed in both patients. In one patient, 336 genes were targeted for casual variants and in the other patient (using a later panel design), 464 genes were targeted. One patient was homozygous for a novel splice variant [c.294+5G>A; p.(Ala98Ins4*)] in ANO5. Another patient was compound heterozygous for two variants in ANO5; a common frameshift variant [c.191dupA; p.(Asn64fs)] and a novel missense variant [c.952G>C; p.(Ala318Pro)]. These findings support the utility of next generation sequencing in the diagnosis of patients presenting with a Limb girdle muscular dystrophy phenotype and extends the genotypic spectrum of ANO5 disease.

8.
Genome Med ; 14(1): 7, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35042540

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a complex, late-onset, neurodegenerative disease with a genetic contribution to disease liability. Genome-wide association studies (GWAS) have identified ten risk loci to date, including the TNIP1/GPX3 locus on chromosome five. Given association analysis data alone cannot determine the most plausible risk gene for this locus, we undertook a comprehensive suite of in silico, in vivo and in vitro studies to address this. METHODS: The Functional Mapping and Annotation (FUMA) pipeline and five tools (conditional and joint analysis (GCTA-COJO), Stratified Linkage Disequilibrium Score Regression (S-LDSC), Polygenic Priority Scoring (PoPS), Summary-based Mendelian Randomisation (SMR-HEIDI) and transcriptome-wide association study (TWAS) analyses) were used to perform bioinformatic integration of GWAS data (Ncases = 20,806, Ncontrols = 59,804) with 'omics reference datasets including the blood (eQTLgen consortium N = 31,684) and brain (N = 2581). This was followed up by specific expression studies in ALS case-control cohorts (microarray Ntotal = 942, protein Ntotal = 300) and gene knockdown (KD) studies of human neuronal iPSC cells and zebrafish-morpholinos (MO). RESULTS: SMR analyses implicated both TNIP1 and GPX3 (p < 1.15 × 10-6), but there was no simple SNP/expression relationship. Integrating multiple datasets using PoPS supported GPX3 but not TNIP1. In vivo expression analyses from blood in ALS cases identified that lower GPX3 expression correlated with a more progressed disease (ALS functional rating score, p = 5.5 × 10-3, adjusted R2 = 0.042, Beffect = 27.4 ± 13.3 ng/ml/ALSFRS unit) with microarray and protein data suggesting lower expression with risk allele (recessive model p = 0.06, p = 0.02 respectively). Validation in vivo indicated gpx3 KD caused significant motor deficits in zebrafish-MO (mean difference vs. control ± 95% CI, vs. control, swim distance = 112 ± 28 mm, time = 1.29 ± 0.59 s, speed = 32.0 ± 2.53 mm/s, respectively, p for all < 0.0001), which were rescued with gpx3 expression, with no phenotype identified with tnip1 KD or gpx3 overexpression. CONCLUSIONS: These results support GPX3 as a lead ALS risk gene in this locus, with more data needed to confirm/reject a role for TNIP1. This has implications for understanding disease mechanisms (GPX3 acts in the same pathway as SOD1, a well-established ALS-associated gene) and identifying new therapeutic approaches. Few previous examples of in-depth investigations of risk loci in ALS exist and a similar approach could be applied to investigate future expected GWAS findings.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/genética , Animais , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Polimorfismo de Nucleotídeo Único , Peixe-Zebra/genética
9.
Eur J Hum Genet ; 30(5): 532-539, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33907316

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is recognised to be a complex neurodegenerative disease involving both genetic and non-genetic risk factors. The underlying causes and risk factors for the majority of cases remain unknown; however, ever-larger genetic data studies and methodologies promise an enhanced understanding. Recent analyses using published summary statistics from the largest ALS genome-wide association study (GWAS) (20,806 ALS cases and 59,804 healthy controls) identified that schizophrenia (SCZ), cognitive performance (CP) and educational attainment (EA) related traits were genetically correlated with ALS. To provide additional evidence for these correlations, we built single and multi-trait genetic predictors using GWAS summary statistics for ALS and these traits, (SCZ, CP, EA) in an independent Australian cohort (846 ALS cases and 665 healthy controls). We compared methods for generating the risk predictors and found that the combination of traits improved the prediction (Nagelkerke-R2) of the case-control logistic regression. The combination of ALS, SCZ, CP, and EA, using the SBayesR predictor method gave the highest prediction (Nagelkerke-R2) of 0.027 (P value = 4.6 × 10-8), with the odds-ratio for estimated disease risk between the highest and lowest deciles of individuals being 3.15 (95% CI 1.96-5.05). These results support the genetic correlation between ALS, SCZ, CP and EA providing a better understanding of the complexity of ALS.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esquizofrenia , Esclerose Lateral Amiotrófica/genética , Austrália , Cognição , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Esquizofrenia/genética
10.
Sci Transl Med ; 14(633): eabj0264, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196023

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an estimated heritability between 40 and 50%. DNA methylation patterns can serve as proxies of (past) exposures and disease progression, as well as providing a potential mechanism that mediates genetic or environmental risk. Here, we present a blood-based epigenome-wide association study meta-analysis in 9706 samples passing stringent quality control (6763 patients, 2943 controls). We identified a total of 45 differentially methylated positions (DMPs) annotated to 42 genes, which are enriched for pathways and traits related to metabolism, cholesterol biosynthesis, and immunity. We then tested 39 DNA methylation-based proxies of putative ALS risk factors and found that high-density lipoprotein cholesterol, body mass index, white blood cell proportions, and alcohol intake were independently associated with ALS. Integration of these results with our latest genome-wide association study showed that cholesterol biosynthesis was potentially causally related to ALS. Last, DNA methylation at several DMPs and blood cell proportion estimates derived from DNA methylation data were associated with survival rate in patients, suggesting that they might represent indicators of underlying disease processes potentially amenable to therapeutic interventions.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/genética , Colesterol , Metilação de DNA/genética , Epigênese Genética , Estudo de Associação Genômica Ampla , Humanos , Doenças Neurodegenerativas/genética
11.
Genome Biol ; 22(1): 90, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771206

RESUMO

BACKGROUND: People with neurodegenerative disorders show diverse clinical syndromes, genetic heterogeneity, and distinct brain pathological changes, but studies report overlap between these features. DNA methylation (DNAm) provides a way to explore this overlap and heterogeneity as it is determined by the combined effects of genetic variation and the environment. In this study, we aim to identify shared blood DNAm differences between controls and people with Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease. RESULTS: We use a mixed-linear model method (MOMENT) that accounts for the effect of (un)known confounders, to test for the association of each DNAm site with each disorder. While only three probes are found to be genome-wide significant in each MOMENT association analysis of amyotrophic lateral sclerosis and Parkinson's disease (and none with Alzheimer's disease), a fixed-effects meta-analysis of the three disorders results in 12 genome-wide significant differentially methylated positions. Predicted immune cell-type proportions are disrupted across all neurodegenerative disorders. Protein inflammatory markers are correlated with profile sum-scores derived from disease-associated immune cell-type proportions in a healthy aging cohort. In contrast, they are not correlated with MOMENT DNAm-derived profile sum-scores, calculated using effect sizes of the 12 differentially methylated positions as weights. CONCLUSIONS: We identify shared differentially methylated positions in whole blood between neurodegenerative disorders that point to shared pathogenic mechanisms. These shared differentially methylated positions may reflect causes or consequences of disease, but they are unlikely to reflect cell-type proportion differences.


Assuntos
Metilação de DNA , Epigênese Genética , Estudo de Associação Genômica Ampla , Doenças Neurodegenerativas/etiologia , Alelos , Biomarcadores , Células Sanguíneas/metabolismo , Estudos de Casos e Controles , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Loci Gênicos , Predisposição Genética para Doença , Humanos , Doenças Neurodegenerativas/metabolismo
12.
Expert Rev Neurother ; 20(9): 921-941, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32569484

RESUMO

INTRODUCTION: ALS is a fatal neurodegenerative disease. However, patients show variability in the length of survival after symptom onset. Understanding the mechanisms of long survival could lead to possible avenues for therapy. AREAS COVERED: This review surveys the reported length of survival in ALS, the clinical features that predict survival in individual patients, and possible factors, particularly genetic factors, that could cause short or long survival. The authors also speculate on possible mechanisms. EXPERT OPINION: a small number of known factors can explain some variability in ALS survival. However, other disease-modifying factors likely exist. Factors that alter motor neurone vulnerability and immune, metabolic, and muscle function could affect survival by modulating the disease process. Knowing these factors could lead to interventions to change the course of the disease. The authors suggest a broad approach is needed to quantify the proportion of variation survival attributable to genetic and non-genetic factors and to identify and estimate the effect size of specific factors. Studies of this nature could not only identify novel avenues for therapeutic research but also play an important role in clinical trial design and personalized medicine.


Assuntos
Esclerose Lateral Amiotrófica/mortalidade , Humanos
13.
J Neurol Sci ; 413: 116809, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32334137

RESUMO

BACKGROUND: Heat shock protein beta-1 (HSPB1) is a ubiquitously expressed molecular chaperone that is important in protecting cells against cellular injury. Mutations in this protein are known to cause autosomal dominant hereditary distal axonal neuropathies, including Charcot Marie Tooth disease type 2F (CMT2F) and distal hereditary motor neuropathy (dHMN). However, patients with HSPB1 mutations have also been described with upper motor neuron signs. We present five patients with mutations in HSPB1 who presented with a range of clinical phenotypes related to different patterns of motor neuron dysfunction. Three of these mutations have not been previously reported. METHODS: Patients were seen at our neuromuscular or amyotrophic lateral sclerosis (ALS) clinics. Gene sequencing was carried out as part of diagnostic investigations. Detailed clinical and electrophysiologic data was collected. RESULTS: Five patients had variants of HSPB1. Three patients had a hereditary length-dependent sensori-motor axonal neuropathy consistent with Charcot Marie Tooth type 2 (CMT2); two of these patients carried novel mutations in the C-terminal region (p.Glu186* and p.Pro170Thr). One patient had the clinical picture of ALS and a novel missense mutation (p.Arg27Leu) in the N-terminal region. Another patient had the phenotype of hereditary spastic paraparesis (HSP) associated with a missense mutation (p.Gly84Arg) already described in families with CMT or dHMN. CONCLUSION: This study describes three novel mutations of HSPB1 and describes two patients with upper motor neurone signs associated with HSPB1 mutations.


Assuntos
Doença de Charcot-Marie-Tooth , Proteínas de Choque Térmico HSP27 , Doença de Charcot-Marie-Tooth/genética , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico/genética , Humanos , Chaperonas Moleculares , Neurônios Motores , Mutação/genética , Fenótipo
14.
Neurol Genet ; 6(2): e398, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32211514

RESUMO

OBJECTIVE: To investigate the genetic contribution to amyotrophic lateral sclerosis (ALS) and the phenotypic and genetic associations between ALS and psychiatric and cardiovascular disorders (CVD) we used the national registry data from Denmark linked to first-degree relatives to estimate heritability and cross-trait parameters. METHODS: ALS cases and 100 sex and birth-matched controls per case from the Danish Civil Registration System were linked to their records in the Danish National Patient Registry. Cases and controls were compared for (1) risk of ALS in first-degree relatives, used to estimate heritability, (2) comorbidity with psychiatric disorders and CVD, and (3) risk of psychiatric disorders and CVD in first-degree relatives. RESULTS: 5,808 ALS cases and 580,800 controls were identified. Fifteen percent of cases and controls could be linked to both parents and full siblings, whereas 70% could be linked to children. (1) We estimated the heritability of ALS to be 0.43 (95% CI, 0.34-0.53). (2) We found increased rates of diagnosis of mental disorders (risk ratio = 1.18; 95% CI, 1.09-1.29) and CVD in those later diagnosed with ALS. (3) In first-degree relatives of those with ALS, we found increased rate of schizophrenia (1.17; 95% CI, 0.96-1.42), but no evidence for increased risk CVD. CONCLUSIONS: Heritability of ALS is lower than commonly reported. There is likely a genetic relationship between ALS and schizophrenia, and a nongenetic relationship between ALS and CVD.

15.
Brain Commun ; 2(2): fcaa154, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33241210

RESUMO

Amyotrophic lateral sclerosis is characterized by the degeneration of upper and lower motor neurons, yet an increasing number of studies in both mouse models and patients with amyotrophic lateral sclerosis suggest that altered metabolic homeostasis is also a feature of disease. Pre-clinical and clinical studies have shown that modulation of energy balance can be beneficial in amyotrophic lateral sclerosis. However, the capacity to target specific metabolic pathways or mechanisms requires detailed understanding of metabolic dysregulation in amyotrophic lateral sclerosis. Here, using the superoxide dismutase 1, glycine to alanine substitution at amino acid 93 (SOD1G93A) mouse model of amyotrophic lateral sclerosis, we demonstrate that an increase in whole-body metabolism occurs at a time when glycolytic muscle exhibits an increased dependence on fatty acid oxidation. Using myotubes derived from muscle of amyotrophic lateral sclerosis patients, we also show that increased dependence on fatty acid oxidation is associated with increased whole-body energy expenditure. In the present study, increased fatty acid oxidation was associated with slower disease progression. However, within the patient cohort, there was considerable heterogeneity in whole-body metabolism and fuel oxidation profiles. Thus, future studies that decipher specific metabolic changes at an individual patient level are essential for the development of treatments that aim to target metabolic pathways in amyotrophic lateral sclerosis.

16.
NPJ Genom Med ; 5: 10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32140259

RESUMO

We conducted DNA methylation association analyses using Illumina 450K data from whole blood for an Australian amyotrophic lateral sclerosis (ALS) case-control cohort (782 cases and 613 controls). Analyses used mixed linear models as implemented in the OSCA software. We found a significantly higher proportion of neutrophils in cases compared to controls which replicated in an independent cohort from the Netherlands (1159 cases and 637 controls). The OSCA MOMENT linear mixed model has been shown in simulations to best account for confounders. When combined in a methylation profile score, the 25 most-associated probes identified by MOMENT significantly classified case-control status in the Netherlands sample (area under the curve, AUC = 0.65, CI95% = [0.62-0.68], p = 8.3 × 10-22). The maximum AUC achieved was 0.69 (CI95% = [0.66-0.71], p = 4.3 × 10-34) when cell-type proportion was included in the predictor.

17.
Mol Genet Genomic Med ; 5(4): 418-428, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28717666

RESUMO

BACKGROUND: Gene discovery has provided remarkable biological insights into amyotrophic lateral sclerosis (ALS). One challenge for clinical application of genetic testing is critical evaluation of the significance of reported variants. METHODS: We use whole exome sequencing (WES) to develop a clinically relevant approach to identify a subset of ALS patients harboring likely pathogenic mutations. In parallel, we assess if DNA methylation can be used to screen for pathogenicity of novel variants since a methylation signature has been shown to associate with the pathogenic C9orf72 expansion, but has not been explored for other ALS mutations. Australian patients identified with ALS-relevant variants were cross-checked with population databases and case reports to critically assess whether they were "likely causal," "uncertain significance," or "unlikely causal." RESULTS: Published ALS variants were identified in >10% of patients; however, in only 3% of patients (4/120) could these be confidently considered pathogenic (in SOD1 and TARDBP). We found no evidence for a differential DNA methylation signature in these mutation carriers. CONCLUSIONS: The use of WES in a typical ALS clinic demonstrates a critical approach to variant assessment with the capability to combine cohorts to enhance the largely unknown genetic basis of ALS.

18.
Nat Commun ; 8: 16015, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-29313844

RESUMO

Hand grip strength is a widely used proxy of muscular fitness, a marker of frailty, and predictor of a range of morbidities and all-cause mortality. To investigate the genetic determinants of variation in grip strength, we perform a large-scale genetic discovery analysis in a combined sample of 195,180 individuals and identify 16 loci associated with grip strength (P<5 × 10-8) in combined analyses. A number of these loci contain genes implicated in structure and function of skeletal muscle fibres (ACTG1), neuronal maintenance and signal transduction (PEX14, TGFA, SYT1), or monogenic syndromes with involvement of psychomotor impairment (PEX14, LRPPRC and KANSL1). Mendelian randomization analyses are consistent with a causal effect of higher genetically predicted grip strength on lower fracture risk. In conclusion, our findings provide new biological insight into the mechanistic underpinnings of grip strength and the causal role of muscular strength in age-related morbidities and mortality.


Assuntos
Genética Populacional , Estudo de Associação Genômica Ampla , Força da Mão , Mãos/fisiologia , Actinas/genética , Adulto , Idoso , Estudos de Coortes , Feminino , Loci Gênicos , Humanos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único , Proteínas Repressoras/genética , Fator de Crescimento Transformador alfa/genética , Reino Unido , População Branca/genética
19.
Med Sci Sports Exerc ; 48(3): 509-20, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26429734

RESUMO

UNLABELLED: α-Actinin-3 is primarily expressed in fast (Type II) fibers in the human skeletal muscle. Over 70% of the global population has at least one copy of a loss of function allele because of a premature stop codon in the ACTN3 gene (R577X). Homozygosity for this variant (577XX) occurs in approximately 16% of humans worldwide and results in complete α-actinin-3 deficiency, which is detrimental to sprint/power performance and alters adaptation to changing physical demands. The functional implications of α-actinin-3 deficiency have been the subject of over 90 studies; however, the effect of heterozygosity for the ACTN3 null allele is not well documented or understood. PURPOSE: We reviewed the literature to focus on the most common ACTN3 genotype (577RX) and its effect on human muscle performance. Specifically, we aimed to determine whether the ACTN3 X allele exerts its effect on human performance only when two copies are present (i.e., in an autosomal recessive fashion). RESULTS: Across a spectrum of conditions, three genotype models (additive, dominant, and recessive) were reported. Most studies assessing healthy adults demonstrated that 577RX heterozygotes performed intermediately (additive model) and/or similarly to the RR genotypes (recessive model). Other studies, (aging, disease/injury, elite sprint performance) showed no definitive genetic model. CONCLUSIONS: Assessment of the biological link between dosage, regulation, and function for each ACTN3 genotype is required to improve our understanding of its functional effect and biological penetrance in healthy, aging, and disease populations.


Assuntos
Actinina/genética , Desempenho Atlético/fisiologia , Genótipo , Fibras Musculares de Contração Rápida/fisiologia , Alelos , Códon sem Sentido , Feminino , Heterozigoto , Humanos , Masculino , Resistência Física/genética
20.
PLoS One ; 11(1): e0147330, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26824906

RESUMO

There are strong genetic components to cardiorespiratory fitness and its response to exercise training. It would be useful to understand the differences in the genomic profile of highly trained endurance athletes of world class caliber and sedentary controls. An international consortium (GAMES) was established in order to compare elite endurance athletes and ethnicity-matched controls in a case-control study design. Genome-wide association studies were undertaken on two cohorts of elite endurance athletes and controls (GENATHLETE and Japanese endurance runners), from which a panel of 45 promising markers was identified. These markers were tested for replication in seven additional cohorts of endurance athletes and controls: from Australia, Ethiopia, Japan, Kenya, Poland, Russia and Spain. The study is based on a total of 1520 endurance athletes (835 who took part in endurance events in World Championships and/or Olympic Games) and 2760 controls. We hypothesized that world-class athletes are likely to be characterized by an even higher concentration of endurance performance alleles and we performed separate analyses on this subsample. The meta-analysis of all available studies revealed one statistically significant marker (rs558129 at GALNTL6 locus, p = 0.0002), even after correcting for multiple testing. As shown by the low heterogeneity index (I2 = 0), all eight cohorts showed the same direction of association with rs558129, even though p-values varied across the individual studies. In summary, this study did not identify a panel of genomic variants common to these elite endurance athlete groups. Since GAMES was underpowered to identify alleles with small effect sizes, some of the suggestive leads identified should be explored in expanded comparisons of world-class endurance athletes and sedentary controls and in tightly controlled exercise training studies. Such studies have the potential to illuminate the biology not only of world class endurance performance but also of compromised cardiac functions and cardiometabolic diseases.


Assuntos
Atletas , Heterogeneidade Genética , Genoma Humano , Resistência Física/genética , Adulto , Alelos , Variações do Número de Cópias de DNA , Expressão Gênica , Frequência do Gene , Loci Gênicos , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Humanos , Masculino , Fluxo Expiratório Máximo/genética , N-Acetilgalactosaminiltransferases/genética , Consumo de Oxigênio/genética , Aptidão Física , Polimorfismo de Nucleotídeo Único , Comportamento Sedentário , Polipeptídeo N-Acetilgalactosaminiltransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA