RESUMO
Malaria is a mosquito-borne disease caused by parasites of the obligate intracellular Apicomplexa phylum the most deadly of which, Plasmodium falciparum, prevails in Africa. Malaria imposes a huge health burden on the world's most vulnerable populations, claiming the lives of nearly one million children and pregnant women each year. Although there is keen interest in eradicating malaria, we do not yet have the necessary tools to meet this challenge, including an effective malaria vaccine and adequate vector control strategies. Here we review what is known about the mechanisms at play in immune resistance to malaria in both the human and mosquito hosts at each step in the parasite's complex life cycle with a view toward developing the tools that will contribute to the prevention of disease and death and, ultimately, to the goal of malaria eradication. In so doing, we hope to inspire immunologists to participate in defeating this devastating disease.
Assuntos
Culicidae/imunologia , Interações Hospedeiro-Patógeno/imunologia , Malária/imunologia , Plasmodium/imunologia , Animais , Culicidae/parasitologia , Humanos , Estágios do Ciclo de Vida , Malária/parasitologia , Malária/prevenção & controle , Plasmodium/crescimento & desenvolvimento , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/imunologiaRESUMO
BACKGROUND: A previous RTS,S/AS01B vaccine challenge trial demonstrated that a 3-dose (0-1-7-month) regimen with a fractional third dose can produce high vaccine efficacy (VE) in adults challenged 3 weeks after vaccination. This study explored the VE of different delayed fractional dose regimens of adult and pediatric RTS,S/AS01 formulations. METHODS: A total of 130 participants were randomized into 5 groups. Four groups received 3 doses of RTS,S/AS01B or RTS,S/AS01E on a 0-1-7-month schedule, with the final 1 or 2 doses being fractional (one-fifth dose volume). One group received 1 full (month 0) and 1 fractional (month 7) dose of RTS,S/AS01E. Immunized and unvaccinated control participants underwent Plasmodium falciparum-infected mosquito challenge (controlled human malaria infection) 3 months after immunization, a timing chosen to potentially discriminate VEs between groups. RESULTS: The VE of 3-dose formulations ranged from 55% (95% confidence interval, 27%-72%) to 76% (48%-89%). Groups administered equivalent formulations of RTS,S/AS01E and RTS,S/AS01B demonstrated comparable VE. The 2-dose group demonstrated lower VE (29% [95% confidence interval, 6%-46%]). All regimens were well tolerated and immunogenic, with trends toward higher anti-circumsporozoite antibody titers in participants protected against infection. CONCLUSIONS: RTS,S/AS01E can provide VE comparable to an equivalent RTS,S/AS01B regimen in adults, suggesting a universal formulation may be considered. Results also suggest that the 2-dose regimen is inferior to the 3-dose regimens evaluated. CLINICAL TRIAL REGISTRATION: NCT03162614.
Assuntos
Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Malária/imunologia , Malária/prevenção & controle , Adolescente , Adulto , Feminino , Humanos , Esquemas de Imunização , Controle de Infecções , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/imunologia , Vacinação , Adulto JovemRESUMO
BACKGROUND: Immunization with attenuated malaria sporozoites protects humans from experimental malaria challenge by mosquito bite. Protection in humans is strongly correlated with the production of T cells targeting a heterogeneous population of pre-erythrocyte antigen proteoforms, including liver stage antigens. Currently, few T cell epitopes derived from Plasmodium falciparum, the major aetiologic agent of malaria in humans are known. METHODS: In this study both in vitro and in vivo malaria liver stage models were used to sequence host and pathogen proteoforms. Proteoforms from these diverse models were subjected to mild acid elution (of soluble forms), multi-dimensional fractionation, tandem mass spectrometry, and top-down bioinformatics analysis to identify proteoforms in their intact state. RESULTS: These results identify a group of host and malaria liver stage proteoforms that meet a 5% false discovery rate threshold. CONCLUSIONS: This work provides proof-of-concept for the validity of this mass spectrometry/bioinformatic approach for future studies seeking to reveal malaria liver stage antigens towards vaccine development.
Assuntos
Fígado/parasitologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Animais , Antígenos de Protozoários/imunologia , Modelos Animais de Doenças , Epitopos de Linfócito T , Feminino , Hepatócitos , Imunidade Celular , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Espectrometria de Massas , Camundongos , Proteômica , Albumina Sérica HumanaRESUMO
Studies have demonstrated cross-reactivity of anti-dengue virus (DENV) antibodies in human sera against Zika virus (ZIKV), promoting increased ZIKV infection in vitro. However, the correlation between in vitro and in vivo findings is not well characterized. Thus, we evaluated the impact of heterotypic flavivirus immunity on ZIKV titers in biofluids of rhesus macaques. Animals previously infected (≥420 days) with DENV2, DENV4, or yellow fever virus were compared to flavivirus-naïve animals following infection with a Brazilian ZIKV strain. Sera from DENV-immune macaques demonstrated cross-reactivity with ZIKV by antibody-binding and neutralization assays prior to ZIKV infection, and promoted increased ZIKV infection in cell culture assays. Despite these findings, no significant differences between flavivirus-naïve and immune animals were observed in viral titers, neutralizing antibody levels, or immune cell kinetics following ZIKV infection. These results indicate that prior infection with heterologous flaviviruses neither conferred protection nor increased observed ZIKV titers in this non-human primate ZIKV infection model.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Flavivirus/imunologia , Infecção por Zika virus/imunologia , Animais , Reações Cruzadas/imunologia , Ensaio de Imunoadsorção Enzimática , Flavivirus/imunologia , Infecções por Flavivirus/patologia , Macaca mulatta , Reação em Cadeia da Polimerase , Zika virus/imunologia , Infecção por Zika virus/patologiaRESUMO
The malaria parasite, Plasmodium, must survive and develop in the mosquito vector to be successfully transmitted to a new host. The Plasmodium falciparum Pfs47 gene is critical for malaria transmission. Parasites that express Pfs47 (NF54 WT) evade mosquito immunity and survive, whereas Pfs47 knockouts (KO) are efficiently eliminated by the complement-like system. Two alternative approaches were used to investigate the mechanism of action of Pfs47 on immune evasion. First, we examined whether Pfs47 affected signal transduction pathways mediating mosquito immune responses, and show that the Jun-N-terminal kinase (JNK) pathway is a key mediator of Anopheles gambiae antiplasmodial responses to P. falciparum infection and that Pfs47 disrupts JNK signaling. Second, we used microarrays to compare the global transcriptional responses of A. gambiae midguts to infection with WT and KO parasites. The presence of Pfs47 results in broad and profound changes in gene expression in response to infection that are already evident 12 h postfeeding, but become most prominent at 26 h postfeeding, the time when ookinetes invade the mosquito midgut. Silencing of 15 differentially expressed candidate genes identified caspase-S2 as a key effector of Plasmodium elimination in parasites lacking Pfs47. We provide experimental evidence that JNK pathway regulates activation of caspases in Plasmodium-invaded midgut cells, and that caspase activation is required to trigger midgut epithelial nitration. Pfs47 alters the cell death pathway of invaded midgut cells by disrupting JNK signaling and prevents the activation of several caspases, resulting in an ineffective nitration response that makes the parasite undetectable by the mosquito complement-like system.
Assuntos
Anopheles/imunologia , Apoptose/fisiologia , MAP Quinase Quinase 4/metabolismo , Plasmodium falciparum/fisiologia , Animais , Anopheles/parasitologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/fisiologiaRESUMO
The innate immune system of Anopheles gambiae mosquitoes limits Plasmodium infection through multiple molecular mechanisms. For example, midgut invasion by the parasite triggers an epithelial nitration response that promotes activation of the complement-like system. We found that suppression of the JNK pathway, by silencing either Hep, JNK, Jun or Fos expression, greatly enhanced Plasmodium infection; while overactivating this cascade, by silencing the suppressor Puckered, had the opposite effect. The JNK pathway limits infection via two coordinated responses. It induces the expression of two enzymes (HPx2 and NOX5) that potentiate midgut epithelial nitration in response to Plasmodium infection and regulates expression of two key hemocyte-derived immune effectors (TEP1 and FBN9). Furthermore, the An. gambiae L3-5 strain that has been genetically selected to be refractory (R) to Plasmodium infection exhibits constitutive overexpression of genes from the JNK pathway, as well as midgut and hemocyte effector genes. Silencing experiments confirmed that this cascade mediates, to a large extent, the drastic parasite elimination phenotype characteristic of this mosquito strain. In sum, these studies revealed the JNK pathway as a key regulator of the ability of An. gambiae mosquitoes to limit Plasmodium infection and identified several effector genes mediating these responses.
Assuntos
Anopheles/imunologia , Proteínas de Insetos/imunologia , MAP Quinase Quinase 4/imunologia , Plasmodium berghei/imunologia , Transdução de Sinais/imunologia , Animais , Anopheles/parasitologia , NADPH Oxidases/imunologia , Proteínas Proto-Oncogênicas c-fos/imunologia , Proteínas Proto-Oncogênicas c-jun/imunologiaRESUMO
Animal models are often used to study hematophagous insect feeding behavior and evaluate products such as topical repellents. However, when these models are used the study animals often experience significant drops in core body temperature because of the effects of anesthesia. This study used a guinea pig model to investigate whether maintaining a normothermic core body temperature during anesthesia influenced the rate of Anopheles stephensi and Phlebotomus papatasi blood feeding. Experiments were conducted with anesthetized animals that had their body temperatures either maintained with a warming device or were allowed to drop naturally. Results showed that when guinea pigs were actively warmed by a heating device, An. stephensi feeding behavior was similar at the beginning and end of anesthesia. However, when a warming device was not used, fewer An. stephensi took a blood meal after the animals' temperatures had dropped. Phlebotomus papatasi were not as sensitive to changes in temperature and feeding rates were similar whether a warming device was used or not. These results are discussed and it is recommended that warming devices are used when conducting feeding experiments with insects sensitive to changes in host body temperature, such as An. stephensi.
Assuntos
Anestesia Geral , Anopheles/fisiologia , Temperatura Corporal , Comportamento Alimentar/fisiologia , Temperatura Alta , Phlebotomus/fisiologia , Animais , CobaiasRESUMO
The Anopheles gambiae immune response against Plasmodium falciparum, an etiological agent of human malaria, has been identified as a source of potential anti-Plasmodium genes and mechanisms to be exploited in efforts to control the malaria transmission cycle. One such mechanism is the Imd pathway, a conserved immune signaling pathway that has potent anti-P. falciparum activity. Silencing the expression of caspar, a negative regulator of the Imd pathway, or over-expressing rel2, an Imd pathway-controlled NFkappaB transcription factor, confers a resistant phenotype on A. gambiae mosquitoes that involves an array of immune effector genes. However, unexplored features of this powerful mechanism that may be essential for the implementation of a malaria control strategy still remain. Using RNA interference to singly or dually silence caspar and other components of the Imd pathway, we have identified genes participating in the anti-Plasmodium signaling module regulated by Caspar, each of which represents a potential target to achieve over-activation of the pathway. We also determined that the Imd pathway is most potent against the parasite's ookinete stage, yet also has reasonable activity against early oocysts and lesser activity against late oocysts. We further demonstrated that caspar silencing alone is sufficient to induce a robust anti-P. falciparum response even in the relative absence of resident gut microbiota. Finally, we established the relevance of the Imd pathway components and regulated effectors TEP1, APL1, and LRIM1 in parasite infection intensity-dependent defense, thereby shedding light on the relevance of laboratory versus natural infection intensity models. Our results highlight the physiological considerations that are integral to a thoughtful implementation of Imd pathway manipulation in A. gambiae as part of an effort to limit the malaria transmission cycle, and they reveal a variety of previously unrecognized nuances in the Imd-directed immune response against P. falciparum.
Assuntos
Anopheles/imunologia , Anopheles/parasitologia , Proteínas de Insetos/imunologia , Malária/imunologia , Plasmodium falciparum/imunologia , Animais , Insetos Vetores/imunologia , Malária Falciparum/prevenção & controle , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Transdução de SinaisRESUMO
A universal feature of metazoan sexual development is the generation of oocyte P granules that withhold certain mRNA species from translation to provide coding potential for proteins during early post-fertilization development. Stabilisation of translationally quiescent mRNA pools in female Plasmodium gametocytes depends on the RNA helicase DOZI, but the molecular machinery involved in the silencing of transcripts in these protozoans is unknown. Using affinity purification coupled with mass-spectrometric analysis we identify a messenger ribonucleoprotein (mRNP) from Plasmodium berghei gametocytes defined by DOZI and the Sm-like factor CITH (homolog of worm CAR-I and fly Trailer Hitch). This mRNP includes 16 major factors, including proteins with homologies to components of metazoan P granules and archaeal proteins. Containing translationally silent transcripts, this mRNP integrates eIF4E and poly(A)-binding protein but excludes P body RNA degradation factors and translation-initiation promoting eIF4G. Gene deletion mutants of 2 core components of this mRNP (DOZI and CITH) are fertilization-competent, but zygotes fail to develop into ookinetes in a female gametocyte-mutant fashion. Through RNA-immunoprecipitation and global expression profiling of CITH-KO mutants we highlight CITH as a crucial repressor of maternally supplied mRNAs. Our data define Plasmodium P granules as an ancient mRNP whose protein core has remained evolutionarily conserved from single-cell organisms to germ cells of multi-cellular animals and stores translationally silent mRNAs that are critical for early post-fertilization development during the initial stages of mosquito infection. Therefore, translational repression may offer avenues as a target for the generation of transmission blocking strategies and contribute to limiting the spread of malaria.
Assuntos
Regulação da Expressão Gênica/fisiologia , Plasmodium berghei/fisiologia , Proteínas de Protozoários/fisiologia , Interferência de RNA/fisiologia , Animais , Southern Blotting , Western Blotting , Feminino , Citometria de Fluxo , Expressão Gênica , Perfilação da Expressão Gênica , Células Germinativas , Imunoprecipitação , Filogenia , RNA Mensageiro/genética , Ribonucleoproteínas/fisiologia , Desenvolvimento Sexual , ZigotoRESUMO
Immune responses mounted by the malaria vector Anopheles gambiae are largely regulated by the Toll and Imd (immune deficiency) pathways via the NF-kappaB transcription factors Rel1 and Rel2, which are controlled by the negative regulators Cactus and Caspar, respectively. Rel1- and Rel2-dependent transcription in A. gambiae has been shown to be particularly critical to the mosquito's ability to manage infection with the rodent malaria parasite Plasmodium berghei. Using RNA interference to deplete the negative regulators of these pathways, we found that Rel2 controls resistance of A. gambiae to the human malaria parasite Plasmodium falciparum, whereas Rel 1 activation reduced infection levels. The universal relevance of this defense system across Anopheles species was established by showing that caspar silencing also prevents the development of P. falciparum in the major malaria vectors of Asia and South America, A. stephensi and A. albimanus, respectively. Parallel studies suggest that while Imd pathway activation is most effective against P. falciparum, the Toll pathway is most efficient against P. berghei, highlighting a significant discrepancy between the human pathogen and its rodent model. High throughput gene expression analyses identified a plethora of genes regulated by the activation of the two Rel factors and revealed that the Toll pathway played a more diverse role in mosquito biology than the Imd pathway, which was more immunity-specific. Further analyses of key anti-Plasmodium factors suggest they may be responsible for the Imd pathway-mediated resistance phenotype. Additionally, we found that the fitness cost caused by Rel2 activation through caspar gene silencing was undetectable in sugar-fed, blood-fed, and P. falciparum-infected female A. gambiae, while activation of the Toll pathway's Rel1 had a major impact. This study describes for the first time a single gene that influences an immune mechanism that is able to abort development of P. falciparum in Anopheline species. Further, this study addresses aspects of the molecular, evolutionary, and physiological consequences of the observed phenotype. These findings have implications for malaria control since broad-spectrum immune activation in diverse anopheline species offers a viable and strategic approach to develop novel malaria control methods worldwide.
Assuntos
Anopheles/genética , Anopheles/imunologia , Proteínas de Insetos/imunologia , Insetos Vetores/genética , Insetos Vetores/imunologia , Plasmodium falciparum/fisiologia , Sequência de Aminoácidos , Animais , Anopheles/parasitologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos Vetores/parasitologia , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Transdução de Sinais/fisiologia , Fatores de TranscriçãoRESUMO
BACKGROUND: We previously demonstrated that RTS,S/AS01B and RTS,S/AS01E vaccination regimens including at least one delayed fractional dose can protect against Plasmodium falciparum malaria in a controlled human malaria infection (CHMI) model, and showed inferiority of a two-dose versus three-dose regimen. In this follow-on trial, we evaluated whether fractional booster vaccination extended or induced protection in previously protected (P-Fx) or non-protected (NP-Fx) participants. METHODS: 49 participants (P-Fx: 25; NP-Fx: 24) received a fractional (1/5th dose-volume) RTS,S/AS01E booster 12 months post-primary regimen. They underwent P. falciparum CHMI three weeks later and were then followed for six months for safety and immunogenicity. RESULTS: Overall vaccine efficacy against re-challenge was 53% (95% CI: 37-65%), and similar for P-Fx (52% [95% CI: 28-68%]) and NP-Fx (54% [95% CI: 29-70%]). Efficacy appeared unaffected by primary regimen or previous protection status. Anti-CS (repeat region) antibody geometric mean concentrations (GMCs) increased post-booster vaccination. GMCs were maintained over time in primary three-dose groups but declined in the two-dose group. Protection after re-challenge was associated with higher anti-CS antibody responses. The booster was well-tolerated. CONCLUSIONS: A fractional RTS,S/AS01E booster given one year after completion of a primary two- or three-dose RTS,S/AS01 delayed fractional dose regimen can extend or induce protection against CHMI. CLINICAL TRIAL REGISTRATION: NCT03824236. linked to this article can be found on the Research Data as well as Figshare https://figshare.com/s/ee025150f9d1ac739361.
Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Anticorpos Antiprotozoários , Humanos , Malária Falciparum/prevenção & controle , Plasmodium falciparum , VacinaçãoRESUMO
Malaria is one of today's most serious diseases with an enormous socioeconomic impact. While anti-malarial drugs have existed for some time and vaccines development may be underway, the most successful malaria eradication programs have thus far relied on attacking the mosquito vector that spreads the disease causing agent Plasmodium. Here we will review past, current and future perspectives of malaria vector control strategies and how these approaches have taken a promising turn thanks recent advances in functional genomics and molecular biology.
Assuntos
Insetos Vetores , Malária , Controle de Mosquitos/métodos , Animais , Animais Geneticamente Modificados , Comportamento Animal/fisiologia , Ritmo Circadiano/fisiologia , Culicidae/anatomia & histologia , Culicidae/fisiologia , Humanos , Luz , Malária/prevenção & controle , Malária/transmissão , Vacinas Antimaláricas/uso terapêuticoRESUMO
Dengue virus (DENV) is transmitted by infectious mosquitoes during blood-feeding via saliva containing biologically-active proteins. Here, we examined the effect of varying DENV infection modality in rhesus macaques in order to improve the DENV nonhuman primate (NHP) challenge model. NHPs were exposed to DENV-1 via subcutaneous or intradermal inoculation of virus only, intradermal inoculation of virus and salivary gland extract, or infectious mosquito feeding. The infectious mosquito feeding group exhibited delayed onset of viremia, greater viral loads, and altered clinical and immune responses compared to other groups. After 15 months, NHPs in the subcutaneous and infectious mosquito feeding groups were re-exposed to either DENV-1 or DENV-2. Viral replication and neutralizing antibody following homologous challenge were suggestive of sterilizing immunity, whereas heterologous challenge resulted in productive, yet reduced, DENV-2 replication and boosted neutralizing antibody. These results show that a more transmission-relevant exposure modality resulted in viral replication closer to that observed in humans.
Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Dengue/imunologia , Animais , Dengue/virologia , Vírus da Dengue/fisiologia , Modelos Animais de Doenças , Feminino , Cinética , Macaca mulatta/imunologia , Mosquitos Vetores/virologia , RNA Viral/sangue , Glândulas Salivares/virologia , Vacinação , Carga Viral , Viremia/prevenção & controle , Replicação ViralRESUMO
Attractive toxic sugar baits (ATSBs) can be an effective vector control tool, especially in areas where aerial or aquatic applications of pesticides are undesirable or impractical. In general, there is a need to develop novel or alternative insecticides for vector control, and there is a demand from consumers for more 'natural' pest control products. Sodium ascorbate (SA) is a naturally occurring antioxidant compound, found in fruits and vegetables, and is available commercially in the United States as a food additive and supplement. In this study, we continuously exposed groups of adult Aedes aegypti (L.), Anopheles stephensi Liston (Diptera: Culicidae), Phlebotomus papatasi Scopoli, and Lutzomyia longipalpis (Lutz & Neiva; Diptera: Psychodidae) to ATSBs containing SA in concentrations of 6, 8, 10, and 20%, and tracked their mortality over 10 d. We also exposed insects to a 20% SA-ATSB on a single day to determine the effect of a single exposure to the bait on mortality. Concentrations of ≥8% SA significantly reduced survival of both mosquito species over 10 d compared with sugar-fed controls. Sand fly mortality was inconsistent. A single exposure to 20% SA significantly reduced the survival of An. stephensi. Mosquitoes exposed to SA exhibited elevated catalase levels and cell death. The use of SA in ATSBs may be most effective in areas where sugar sources are scarce, and where mosquito species frequently sugar-feed. SA sugar baits may be a particularly attractive option for the general public looking to control mosquito populations using 'natural' alternatives to synthetic insecticides.
Assuntos
Ácido Ascórbico , Culicidae , Controle de Insetos , Inseticidas , Psychodidae , Açúcares , Animais , Relação Dose-Resposta a Droga , Feminino , Masculino , Controle de MosquitosRESUMO
Immunoglobulin superfamily (IgSF) proteins are known for their ability to specifically recognize and adhere to other molecules, mediating cell-surface reception and pathogen recognition. Mammalian IgSF proteins such as antibodies are among the best characterized molecules of the immune system; in contrast, the involvement of invertebrate IgSF members in immunity has not been broadly studied. Analysis of the predicted Anopheles gambiae transcriptome identified 138 proteins that have at least one immunoglobulin domain. Challenge with Plasmodium, Gram-negative or Gram-positive bacteria resulted in significant regulation of 85 IgSF genes, indicating potential roles for these molecules in infection responses and immunity. Based on sequence and expression data, six infection-responsive with immunoglobulin domain (IRID 1-6) genes were chosen and functionally characterized with regard to their role in innate immunity. Reverse-genetic gene-silencing assays showed IRID3, IRID5 and IRID6 contribute to viability upon bacterial infection while IRID4 and IRID6 are involved in limiting Plasmodium falciparum infection.
Assuntos
Anopheles/imunologia , Imunidade Inata , Imunoglobulinas/fisiologia , Proteínas de Insetos/fisiologia , Animais , Anopheles/microbiologia , Anopheles/parasitologia , Drosophila melanogaster/imunologia , Regulação da Expressão Gênica , Genes de Imunoglobulinas , Especificidade de Órgãos , Plasmodium falciparum/crescimento & desenvolvimentoRESUMO
An attenuated Plasmodium falciparum (Pf) sporozoite (SPZ) vaccine, PfSPZ Vaccine, is highly protective against controlled human malaria infection (CHMI) 3 weeks after immunization, but the durability of protection is unknown. We assessed how vaccine dosage, regimen, and route of administration affected durable protection in malaria-naive adults. After four intravenous immunizations with 2.7 × 10(5) PfSPZ, 6/11 (55%) vaccinated subjects remained without parasitemia following CHMI 21 weeks after immunization. Five non-parasitemic subjects from this dosage group underwent repeat CHMI at 59 weeks, and none developed parasitemia. Although Pf-specific serum antibody levels correlated with protection up to 21-25 weeks after immunization, antibody levels waned substantially by 59 weeks. Pf-specific T cell responses also declined in blood by 59 weeks. To determine whether T cell responses in blood reflected responses in liver, we vaccinated nonhuman primates with PfSPZ Vaccine. Pf-specific interferon-γ-producing CD8 T cells were present at â¼100-fold higher frequencies in liver than in blood. Our findings suggest that PfSPZ Vaccine conferred durable protection to malaria through long-lived tissue-resident T cells and that administration of higher doses may further enhance protection.
Assuntos
Anticorpos Antiprotozoários/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunogenicidade da Vacina/imunologia , Fígado/imunologia , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Parasitemia/prevenção & controle , Plasmodium falciparum/imunologia , Administração Intravenosa , Adolescente , Adulto , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Voluntários Saudáveis , Humanos , Imunoglobulina G/imunologia , Interferon gama/imunologia , Fígado/citologia , Macaca mulatta , Vacinas Antimaláricas/imunologia , Masculino , Pessoa de Meia-Idade , Parasitemia/imunologia , Esporozoítos/imunologia , Linfócitos T/imunologia , Adulto JovemRESUMO
Thirty years ago, the Entomology Branch at the Walter Reed Army Institute of Research (WRAIR) performed the first controlled human malaria infection, in which lab-reared mosquitoes were infected with lab-cultured malaria parasites and allowed to feed on human volunteers. The development of this model was a turning point for pre-erythrocytic malaria vaccine research and, through decades of refinement, has supported 30 years of efficacy testing of a suite of antimalarial vaccines and drugs. In this article, we present a historical overview of the research that enabled the first challenge to occur and the modifications made to the challenge over time, a summary of the 104 challenges performed by WRAIR from the first into 2015, and a prospective look at what the next generation of challenges might entail.
Assuntos
Academias e Institutos/história , Vacinas Antimaláricas , Malária/prevenção & controle , Medicina Militar , Projetos de Pesquisa , Voluntários Saudáveis , História do Século XX , Experimentação Humana/história , Humanos , Vacinas Antimaláricas/história , Vacinas Antimaláricas/uso terapêutico , Medicina Militar/história , Medicina Militar/métodos , Estados UnidosRESUMO
Small mammals have difficulty maintaining body temperature under anesthesia. This hypothermia is a potential detriment not only to the health and comfort of the animal but also to the integrity of any treatment given or data gathered during the anesthetic period. Using an external warming device to assist with temperature regulation can mitigate these effects. In this study, we investigated the ability of an advanced warming device that uses far-infrared (FIR) heating and responds to real-time core temperature monitoring to maintain a normothermic core temperature in guinea pigs. Body temperatures were measured during 30 min of ketamine-xylazine general anesthesia with and without application of the heating device. The loss of core body heat from anesthetized guinea pigs under typical (unwarmed) conditions was significant, and this loss was almost completely mitigated by application of the FIR heating pad. The significant difference between the temperatures of the actively warmed guinea pigs as compared with the control group began as early as 14 min after anesthetic administration, leading to a 2.6 °C difference at 30 min. Loss of core body temperature was not correlated with animals' body weight; however, weight influences the efficiency of FIR warming slightly. These study results show that the FIR heating device accurately controls core body temperature in guinea pigs, therefore potentially alleviating the effects of body heat loss on animal physiology.
Assuntos
Anestésicos/administração & dosagem , Cobaias , Calefação/métodos , Hipotermia/veterinária , Animais , Animais Endogâmicos , Hipotermia/prevenção & controle , Raios Infravermelhos , Masculino , Organismos Livres de Patógenos EspecíficosRESUMO
Mosquito blood meals taken from humans and animals potentially represent a useful source of blood for the detection of blood-borne pathogens. In this feasibility study, Anopheles stephensi mosquitoes were fed with blood meals spiked with dengue virus type 2 (DENV-2) and harvested at serial time points. These mosquitoes are not competent vectors, and the virus is not expected to replicate. Ingested blood was spotted on Whatman FTA cards and stored at room temperature. Mosquito abdomens were removed and stored at -80°C. Control blood meal aliquots were stored in vials or applied onto FTA cards. After 4 weeks of storage, the samples were extracted using beadbeating and QIAamp Viral RNA kit (Qiagen Sciences, Germantown, MD). Recovered viral RNA was analyzed by DENV-2 TaqMan RT-PCR assay and next-generation sequencing (NGS). Overall viral RNA recovery efficiency was 15% from the directly applied dried blood spots and approximately 20% or higher for dried blood spots made by blotting mosquito midgut on FTA cards. Viral RNA in mosquito-ingested blood decreases over time, but remains detectable 24 hours after blood feeding. The viral sequences in FTA-stored specimens can be maintained at room temperature. The strategy has the potential utility in expedited zoonotic virus discovery and blood-borne pathogen surveillance.
Assuntos
Anopheles/virologia , Vírus da Dengue/isolamento & purificação , Vigilância da População/métodos , Animais , Dengue/epidemiologia , Dengue/transmissão , Vírus da Dengue/genética , Vírus da Dengue/fisiologia , Teste em Amostras de Sangue Seco , Estudos de Viabilidade , Humanos , Insetos Vetores/virologia , RNA Viral/genética , RNA Viral/isolamento & purificaçãoRESUMO
Hemocytes synthesize key components of the mosquito complement-like system, but their role in the activation of antiplasmodial responses has not been established. The effect of activating Toll signaling in hemocytes on Plasmodium survival was investigated by transferring hemocytes or cell-free hemolymph from donor mosquitoes in which the suppressor cactus was silenced. These transfers greatly enhanced antiplasmodial immunity, indicating that hemocytes are active players in the activation of the complement-like system, through an effector/effectors regulated by the Toll pathway. A comparative analysis of hemocyte populations between susceptible G3 and the refractory L3-5 Anopheles gambiae mosquito strains did not reveal significant differences under basal conditions or in response to Plasmodium berghei infection. The response of susceptible mosquitoes to different Plasmodium species revealed similar kinetics following infection with P. berghei,P. yoelii or P. falciparum, but the strength of the priming response was stronger in less compatible mosquito-parasite pairs. The Toll, Imd,STAT or JNK signaling cascades were not essential for the production of the hemocyte differentiation factor (HDF) in response to P. berghei infection, but disruption of Toll, STAT or JNK abolished hemocyte differentiation in response to HDF. We conclude that hemocytes are key mediators of A. gambiae antiplasmodial responses.