Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36679467

RESUMO

In recent years, different groups have developed algorithms to control the stiffness of a robotic device through the electromyographic activity collected from a human operator. However, the approaches proposed so far require an initial calibration, have a complex subject-specific muscle model, or consider the activity of only a few pairs of antagonist muscles. This study described and tested an approach based on a biomechanical model to estimate the limb stiffness of a multi-joint, multi-muscle system from muscle activations. The "virtual stiffness" method approximates the generated stiffness as the stiffness due to the component of the muscle-activation vector that does not generate any endpoint force. Such a component is calculated by projecting the vector of muscle activations, estimated from the electromyographic signals, onto the null space of the linear mapping of muscle activations onto the endpoint force. The proposed method was tested by using an upper-limb model made of two joints and six Hill-type muscles and data collected during an isometric force-generation task performed with the upper limb. The null-space projection of the muscle-activation vector approximated the major axis of the stiffness ellipse or ellipsoid. The model provides a good approximation of the voluntary stiffening performed by participants that could be directly implemented in wearable myoelectric controlled devices that estimate, in real-time, the endpoint forces, or endpoint movement, from the mapping between muscle activation and force, without any additional calibrations.


Assuntos
Músculo Esquelético , Extremidade Superior , Humanos , Músculo Esquelético/fisiologia , Extremidade Superior/fisiologia , Movimento/fisiologia , Algoritmos , Fenômenos Biomecânicos , Eletromiografia
2.
Eur J Appl Physiol ; 120(4): 853-860, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32076830

RESUMO

PURPOSE: Different motor units (MUs) in the biceps brachii (BB) muscle have been shown to be preferentially recruited during either elbow flexion or supination. Whether these different units reside within different regions is an open issue. In this study, we tested wheter MUs recruited during submaximal isometric tasks of elbow flexion and supination for two contraction levels and with the wrist fixed at two different angles are spatially localized in different BB portions. METHODS: The MUs' firing instants were extracted by decomposing high-density surface electromyograms (EMG), detected from the BB muscle of 12 subjects with a grid of electrodes (4 rows along the BB longitudinal axis, 16 columns medio-laterally). The firing instants were then used to trigger and average single-differential EMGs. The average rectified value was computed separately for each signal and the maximal value along each column in the grid was retained. The center of mass, defined as the weighted mean of the maximal, average rectified value across columns, was then consdiered to assess the medio-lateral changes in the MU surface representation between conditions. RESULTS: Contraction level, but neither wrist position nor force direction (flexion vs. supination), affected the spatial distribution of BB MUs. In particular, higher forces were associated with the recruitment of BB MUs whose action potentials were represented more medially. CONCLUSION: Although the action potentials of BB MUs were represented locally across the muscle medio-lateral region, dicrimination between elbow flexion or supination seems unlikely from the surface representation of MUs action potentials.


Assuntos
Potenciais de Ação , Contração Muscular , Músculo Esquelético/fisiologia , Recrutamento Neurofisiológico , Supinação/fisiologia , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Adulto Jovem
3.
Sensors (Basel) ; 19(19)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547181

RESUMO

Wearable sensors are de facto revolutionizing the assessment of standing balance. The aim of this work is to review the state-of-the-art literature that adopts this new posturographic paradigm, i.e., to analyse human postural sway through inertial sensors directly worn on the subject body. After a systematic search on PubMed and Scopus databases, two raters evaluated the quality of 73 full-text articles, selecting 47 high-quality contributions. A good inter-rater reliability was obtained (Cohen's kappa = 0.79). This selection of papers was used to summarize the available knowledge on the types of sensors used and their positioning, the data acquisition protocols and the main applications in this field (e.g., "active aging", biofeedback-based rehabilitation for fall prevention, and the management of Parkinson's disease and other balance-related pathologies), as well as the most adopted outcome measures. A critical discussion on the validation of wearable systems against gold standards is also presented.


Assuntos
Doença de Parkinson/fisiopatologia , Equilíbrio Postural/fisiologia , Dispositivos Eletrônicos Vestíveis , Acidentes por Quedas , Humanos
4.
Sensors (Basel) ; 19(19)2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31569372

RESUMO

Overweight/obesity is a physical condition that affects daily activities, including walking. The main purpose of this study was to identify if there is a relationship between body mass index (BMI) and gait characteristics in young adults. 12 normal weight (NW) and 10 overweight/obese (OW) individuals walked at a self-selected speed along a 14 m indoor path. H-Gait system, combining seven inertial sensors (fixed on pelvis and lower limbs), was used to record gait data. Walking speed, spatio-temporal parameters and joint kinematics in 3D were analyzed. Differences between NW and OW and correlations between BMI and gait parameters were evaluated. Conventional spatio-temporal parameters did not show statistical differences between the two groups or correlations with the BMI. However, significant results were pointed out for the joint kinematics. OW showed greater hip joint angles in frontal and transverse planes, with respect to NW. In the transverse plane, OW showed a greater knee opening angle and a shorter length of knee and ankle trajectories. Correlations were found between BMI and kinematic parameters in the frontal and transverse planes. Despite some phenomena such as soft tissue artifact and kinematics cross-talk, which have to be more deeply assessed, current results show a relationship between BMI and gait characteristics in young adults that should be looked at in osteoarthritis prevention.


Assuntos
Índice de Massa Corporal , Marcha/fisiologia , Monitorização Fisiológica/instrumentação , Sobrepeso , Adulto , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Humanos , Articulação do Joelho/fisiologia , Masculino , Monitorização Fisiológica/métodos , Sobrepeso/fisiopatologia , Análise Espaço-Temporal , Caminhada/fisiologia
5.
Adapt Phys Activ Q ; : 1-16, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30563347

RESUMO

In cross-country sit-skiing, the trunk plays a crucial role in propulsion generation and balance maintenance. Trunk stability is evaluated by automatic responses to unpredictable perturbations; however, electromyography is challenging. The aim of this study was to identify a measure to group sit-skiers according to their ability to control the trunk. Seated in their competitive sit-ski, 10 male and 5 female Paralympic sit-skiers received 6 forward and 6 backward unpredictable perturbations in random order. k-means clustered trunk position at rest, delay to invert the trunk motion, and trunk range of motion significantly into 2 groups. In conclusion, unpredictable perturbations might quantify trunk impairment and may become an important tool in the development of an evidence-based classification system for cross-country sit-skiers.

6.
Sensors (Basel) ; 17(10)2017 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-29065485

RESUMO

Background: Wearable magneto-inertial sensors are being increasingly used to obtain human motion measurements out of the lab, although their performance in applications requiring high accuracy, such as gait analysis, are still a subject of debate. The aim of this work was to validate a gait analysis system (H-Gait) based on magneto-inertial sensors, both in normal weight (NW) and overweight/obese (OW) subjects. The validation is performed against a reference multichannel recording system (STEP32), providing direct measurements of gait timings (through foot-switches) and joint angles in the sagittal plane (through electrogoniometers). Methods: Twenty-two young male subjects were recruited for the study (12 NW, 10 OW). After positioning body-fixed sensors of both systems, each subject was asked to walk, at a self-selected speed, over a 14-m straight path for 12 trials. Gait signals were recorded, at the same time, with the two systems. Spatio-temporal parameters, ankle, knee, and hip joint kinematics were extracted analyzing an average of 89 ± 13 gait cycles from each lower limb. Intraclass correlation coefficient and Bland-Altmann plots were used to compare H-Gait and STEP32 measurements. Changes in gait parameters and joint kinematics of OW with respect NW were also evaluated. Results: The two systems were highly consistent for cadence, while a lower agreement was found for the other spatio-temporal parameters. Ankle and knee joint kinematics is overall comparable. Joint ROMs values were slightly lower for H-Gait with respect to STEP32 for the ankle (by 1.9° for NW, and 1.6° for OW) and for the knee (by 4.1° for NW, and 1.8° for OW). More evident differences were found for hip joint, with ROMs values higher for H-Gait (by 6.8° for NW, and 9.5° for OW). NW and OW showed significant differences considering STEP32 (p = 0.0004), but not H-Gait (p = 0.06). In particular, overweight/obese subjects showed a higher cadence (55.0 vs. 52.3 strides/min) and a lower hip ROM (23.0° vs. 27.3°) than normal weight subjects. Conclusions: The two systems can be considered interchangeable for what concerns joint kinematics, except for the hip, where discrepancies were evidenced. Differences between normal and overweight/obese subjects were statistically significant using STEP32. The same tendency was observed using H-Gait.


Assuntos
Biofísica/instrumentação , Peso Corporal , Marcha , Dispositivos Eletrônicos Vestíveis/normas , Adulto , Fenômenos Biomecânicos , Articulação do Quadril/fisiologia , Humanos , Articulação do Joelho/fisiologia , Magnetismo , Masculino , Obesidade , Sobrepeso , Caminhada
7.
Eur J Appl Physiol ; 116(2): 335-42, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26526290

RESUMO

PURPOSE: The purpose of this study was to investigate how much the distance between stimulation electrodes affects the knee extension torque in tetanic, electrically elicited contractions. METHODS: Current pulses of progressively larger amplitude, from 0 mA to maximally tolerated intensities, were delivered at 20 pps to the vastus medialis, rectus femoris and vastus lateralis muscles of ten, healthy male subjects. Four inter-electrode distances were tested: 32.5% (L1), 45.0% (L2), 57.5% (L3) and 70% (L4) of the distance between the patella apex and the anterior superior iliac spine. The maximal knee extension torque and the current leading to the maximal torque were measured and compared between electrode configurations. RESULTS: The maximal current tolerated by each participant ranged from 60 to 100 mA and did not depend on the inter-electrode distance. The maximal knee extension torque elicited did not differ between L3 and L4 (P = 0.15) but, for both conditions, knee torque was significantly greater than for L1 and L2 (P < 0.024). On average, the extension torque elicited for L3 and L4 was two to three times greater than that obtained for L1 and L2. The current leading to maximal torque was not as sensitive to inter-electrode distance. Except for L1 current intensity did not change with electrode configuration (P > 0.16). CONCLUSIONS: Key results presented here revealed that for a given stimulation intensity, knee extension torque increased dramatically with the distance between electrodes. The distance between electrodes seems therefore to critically affect knee torque, with potential implication for optimising exercise protocols based on electrical stimulation.


Assuntos
Eletromiografia/métodos , Joelho/fisiologia , Contração Muscular , Adulto , Eletrodos , Eletromiografia/instrumentação , Humanos , Masculino , Músculo Esquelético/fisiologia , Torque
8.
J Neurochem ; 129(2): 240-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24517494

RESUMO

Neuronal cells are characterized by the presence of two confined domains, which are different in their cellular properties, biochemical functions and molecular identity. The generation of asymmetric domains in neurons should logically require specialized membrane trafficking to both promote neurite outgrowth and differential distribution of components. Members of the Rab family of small GTPases are key regulators of membrane trafficking involved in transport, tethering and docking of vesicles through their effectors. RabGTPases activity is coupled to the activity of guanine nucleotide exchange factors or GEFs, and GTPase-activating proteins known as GAPs. Since the overall spatiotemporal distribution of GEFs, GAPs and Rabs governs trafficking through the secretory and endocytic pathways, affecting exocytosis, endocytosis and endosome recycling, it is likely that RabGTPases could have a major role in neurite outgrowth, elongation and polarization. In this review we summarize the evidence linking the functions of several RabGTPases to axonal and dendritic development in primary neurons, as well as neurite formation in neuronal cell lines. We focused on the role of RabGTPases from the trans-Golgi network, early/late and recycling endosomes, as well as the function of some Rab effectors in neuritogenesis. Finally, we also discuss the participation of the ADP-ribosylation factor 6, a member of the ArfGTPase family, in neurite formation since it seems to have an important cross-talk with RabGTPases.


Assuntos
Neuritos/fisiologia , Proteínas rab de Ligação ao GTP/fisiologia , Fator 6 de Ribosilação do ADP , Animais , Endossomos/fisiologia , Humanos , Transdução de Sinais/fisiologia , Rede trans-Golgi/fisiologia
9.
Sensors (Basel) ; 14(12): 23230-47, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25490587

RESUMO

Accumulated signal noise will cause the integrated values to drift from the true value when measuring orientation angles of wearable sensors. This work proposes a novel method to reduce the effect of this drift to accurately measure human gait using wearable sensors. Firstly, an infinite impulse response (IIR) digital 4th order Butterworth filter was implemented to remove the noise from the raw gyro sensor data. Secondly, the mode value of the static state gyro sensor data was subtracted from the measured data to remove offset values. Thirdly, a robust double derivative and integration method was introduced to remove any remaining drift error from the data. Lastly, sensor attachment errors were minimized by establishing the gravitational acceleration vector from the acceleration data at standing upright and sitting posture. These improvements proposed allowed for removing the drift effect, and showed an average of 2.1°, 33.3°, 15.6° difference for the hip knee and ankle joint flexion/extension angle, when compared to without implementation. Kinematic and spatio-temporal gait parameters were also calculated from the heel-contact and toe-off timing of the foot. The data provided in this work showed potential of using wearable sensors in clinical evaluation of patients with gait-related diseases.


Assuntos
Actigrafia/instrumentação , Algoritmos , Artefatos , Marcha/fisiologia , Monitorização Ambulatorial/instrumentação , Transdutores , Actigrafia/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Perna (Membro)/fisiologia , Monitorização Ambulatorial/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído
10.
Proc Inst Mech Eng H ; 237(1): 61-73, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36377588

RESUMO

The increasing average age emphasizes the importance of gait analysis in elderly populations. Inertial Measurement Units (IMUs) represent a suitable wearable technology for the characterization of gait by estimating spatio-temporal parameters (STPs). However, the location of inertial sensors on the human body and the associated algorithms for the estimation of gait STPs play a fundamental role and are still open challenges. Accordingly, the aim of this work was to compare three IMUs set-ups (trunk, shanks, and ankles) and correspondent algorithms to a gold standard optoelectronic system for the estimation of gait STPs in a healthy elderly population. In total, 14 healthy elderly subjects walked barefoot at three different speeds. Gait parameters were assessed for each IMUs set-up and compared to those estimated with the gold standard. A statistical analysis based on Pearson correlation, Root Mean Square Error and Bland Altman plots was conducted to evaluate the accuracy of IMUs. Even though all tested set-ups produced accurate results, the IMU on the trunk performed better in terms of correlation (R ≥ 0.8), RMSE (0.01-0.06 s for temporal parameters, 0.03-0.04 for the limp index), and level of agreement (-0.01 s ≤ mean error ≤ 0.01 s, -0.02 s ≤ standard deviation error ≤ 0.02 s), also allowing simpler preparation of subjects and minor encumbrance during gait. From the promising results, a similar experiment might be conducted in pathological populations in the attempt to verify the accuracy of IMUs set-ups and algorithms also in non-physiological patterns.


Assuntos
Marcha , Caminhada , Humanos , Idoso , Marcha/fisiologia , Caminhada/fisiologia , Análise da Marcha , Tornozelo , Algoritmos
11.
Bioengineering (Basel) ; 10(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36829728

RESUMO

Estimation of the force exerted by muscles from their electromyographic (EMG) activity may be useful to control robotic devices. Approximating end-point forces as a linear combination of the activities of multiple muscles acting on a limb may lead to an inaccurate estimation because of the dependency between the EMG signals, i.e., multi-collinearity. This study compared the EMG-to-force mapping estimation performed with standard multiple linear regression and with three other algorithms designed to reduce different sources of the detrimental effects of multi-collinearity: Ridge Regression, which performs an L2 regularization through a penalty term; linear regression with constraints from foreknown anatomical boundaries, derived from a musculoskeletal model; linear regression of a reduced number of muscular degrees of freedom through the identification of muscle synergies. Two datasets, both collected during the exertion of submaximal isometric forces along multiple directions with the upper limb, were exploited. One included data collected across five sessions and the other during the simultaneous exertion of force and generation of different levels of co-contraction. The accuracy and consistency of the EMG-to-force mappings were assessed to determine the strengths and drawbacks of each algorithm. When applied to multiple sessions, Ridge Regression achieved higher accuracy (R2 = 0.70) but estimations based on muscle synergies were more consistent (differences between the pulling vectors of mappings extracted from different sessions: 67%). In contrast, the implementation of anatomical constraints was the best solution, both in terms of consistency (R2 = 0.64) and accuracy (74%), in the case of different co-contraction conditions. These results may be used for the selection of the mapping between EMG and force to be implemented in myoelectrically controlled robotic devices.

12.
Clin J Sport Med ; 22(1): 58-64, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22222588

RESUMO

OBJECTIVE: To analyze the biomechanics of the double poling (DP) gesture in cross-country disabled sit-skiers in the field during competition. DESIGN: Cross-sectional research. SETTING: One-kilometer sprint race, Winter Paralympic Games, Vancouver 2010, Canada. PARTICIPANTS: Paralympic athletes: 35 men and 15 women, classified in all the 5 classes of the sit-skier category. INTERVENTION: Elite sit-skiers, with different disabilities, were recorded with a high-speed markerless stereophotogrammetric camera system. Reference points were semiautomatically tracked frame-by-frame on video images, according to a biomechanical model consisting of 7 anatomical and 4 technical points. MAIN OUTCOME MEASURES: Coordinates of anatomical and technical points were evaluated for 2-dimensional kinematic analysis of the push gesture both with reference to a ground-fixed frame and with respect to the athletes' seat on the sledges. RESULTS: Several graphical results represent the development of the DP gesture of each athlete with respect to both ground reference frame and sledge reference frame. The progression of the gesture is depicted by body and pole stick diagrams, trends of reference point positions and their gradients, and body joint trajectories in space. In addition, kinematic biomechanical parameters (eg, joints' range of motion) and technical parameters (eg, pole incline, sledge velocity) are reported. CONCLUSIONS: This research demonstrates the feasibility of a markerless kinematic analysis of the poling gesture on a contest field. Results point out a wide variability of the gesture due to the residual functional capabilities and sitting postures of each athlete. However, the poling cycles of subjects classified into different classes present similar features. An original segmentation of the DP gesture in a sequence of 3 phases is proposed in the article.


Assuntos
Fenômenos Biomecânicos , Pessoas com Deficiência , Esqui/fisiologia , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Postura , Amplitude de Movimento Articular , Gravação em Vídeo
13.
Cells ; 11(8)2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35455998

RESUMO

Neurons are highly polarized cells requiring precise regulation of trafficking and targeting of membrane proteins to generate and maintain different and specialized compartments, such as axons and dendrites. Disruption of the Golgi apparatus (GA) secretory pathway in developing neurons alters axon/dendritic formation. Therefore, detailed knowledge of the mechanisms underlying vesicles exiting from the GA is crucial for understanding neuronal polarity. In this study, we analyzed the role of Brefeldin A-Ribosylated Substrate (CtBP1-S/BARS), a member of the C-terminal-binding protein family, in the regulation of neuronal morphological polarization and the exit of membrane proteins from the Trans Golgi Network. Here, we show that BARS is expressed during neuronal development in vitro and that RNAi suppression of BARS inhibits axonal and dendritic elongation in hippocampal neuronal cultures as well as largely perturbed neuronal migration and multipolar-to-bipolar transition during cortical development in situ. In addition, using plasma membrane (PM) proteins fused to GFP and engineered with reversible aggregation domains, we observed that expression of fission dominant-negative BARS delays the exit of dendritic and axonal membrane protein-containing carriers from the GA. Taken together, these data provide the first set of evidence suggesting a role for BARS in neuronal development by regulating post-Golgi membrane trafficking.


Assuntos
Complexo de Golgi , Neurônios , Axônios/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/fisiologia , Rede trans-Golgi/metabolismo
14.
J Neurosci ; 29(42): 13292-301, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19846717

RESUMO

Axonal elongation is one of the hallmarks of neuronal polarization. This phenomenon requires axonal membrane growth by exocytosis of plasmalemmal precursor vesicles (PPVs) at the nerve growth cone, a process regulated by IGF-1 activation of the PI3K (phosphatidylinositol-3 kinase) pathway. Few details are known, however, about the targeting mechanisms for PPVs. Here, we show, in cultured hippocampal pyramidal neurons and growth cones isolated from fetal rat brain, that IGF-1 activates the GTP-binding protein TC10, which triggers translocation to the plasma membrane of the exocyst component exo70 in the distal axon and growth cone. We also show that TC10 and exo70 function are necessary for addition of new membrane and, thus, axon elongation stimulated by IGF-1. Moreover, expression silencing of either TC10 or exo70 inhibit the establishment of neuronal polarity by hindering the insertion of IGF-1 receptor in one of the undifferentiated neurites. We conclude that, in hippocampal pyramidal neurons in culture, (1) membrane expansion at the axonal growth cone is regulated by IGF-1 via a cascade involving TC10 and the exocyst complex, (2) TC10 and exo70 are essential for the polarized externalization of IGF-1 receptor, and (3) this process is necessary for axon specification.


Assuntos
Axônios/fisiologia , Axônios/ultraestrutura , Fator de Crescimento Insulin-Like I/farmacologia , Células Piramidais/citologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Axônios/efeitos dos fármacos , Células Cultivadas , Estruturas Celulares/efeitos dos fármacos , Estruturas Celulares/metabolismo , Cromonas/farmacologia , Embrião de Mamíferos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Morfolinas/farmacologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Receptor IGF Tipo 1/fisiologia , Fatores de Tempo , Transfecção/métodos
15.
Proc Inst Mech Eng H ; 234(7): 686-696, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32292102

RESUMO

Judo is a combat sport that involves throwing the opponent onto the back. When being thrown, head biomechanics may be related to head injury risk. This study aimed to assess head injury risks associated with four Judo techniques in children and adolescents with different experience levels. Twenty children (<12 years) and 20 adolescents (≥ 12 years) judoka were recruited. Each group was divided into non-expert and expert. Two inertial sensors were fixed on fallers' head and torso. Two backward (o-soto-gari and o-uchi-gari) and two forward (ippon-seoi-nage and tai-otoshi) techniques were performed. Peak of linear and angular head acceleration magnitude, impact time duration, neck angle, and the Gadd Severity Index were assessed. Children did not show differences between techniques or experience levels. In contrast, adolescents showed greater linear acceleration peak in o-soto-gari than tai-otoshi (p = 0.03), greater angular acceleration peak in o-soto-gari and o-uchi-gari than ippon-seoi-nage (p < 0.05), and greater neck flexion in o-uchi-gari than ippon-seoi-nage (p = 0.004). Compared to expert adolescents, non-expert adolescents showed greater angular acceleration peak, impact duration, and the Gadd Severity Index in o-soto-gari (p < 0.05) and greater neck extension in o-uchi-gari (p = 0.02). Current results pointed out higher risks for adolescents judoka while being thrown with backward techniques, especially for non-expert participants. This study highlights the need of training athletes in controlling head and neck during back falls from a young age to become expert judoka in adulthood.


Assuntos
Atletas , Artes Marciais/lesões , Adolescente , Fenômenos Biomecânicos , Criança , Traumatismos Craniocerebrais/epidemiologia , Traumatismos Craniocerebrais/prevenção & controle , Feminino , Humanos , Masculino , Artes Marciais/fisiologia , Medição de Risco/métodos , Ferimentos e Lesões/prevenção & controle
16.
Proc Inst Mech Eng H ; 234(10): 1094-1105, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32633209

RESUMO

The increasing number of postural disorders emphasizes the central role of the vertebral spine during gait. Indeed, clinicians need an accurate and non-invasive method to evaluate the effectiveness of a rehabilitation program on spinal kinematics. Accordingly, the aim of this work was the use of inertial sensors for the assessment of angles among vertebral segments during gait. The spine was partitioned into five segments and correspondingly five inertial measurement units were positioned. Articulations between two adjacent spine segments were modeled with spherical joints, and the tilt-twist method was adopted to evaluate flexion-extension, lateral bending and axial rotation. In total, 18 young healthy subjects (9 males and 9 females) walked barefoot in three different conditions. The spinal posture during gait was efficiently evaluated considering the patterns of planar angles of each spine segment. Some statistically significant differences highlighted the influence of gender, speed and imposed cadence. The proposed methodology proved the usability of inertial sensors for the assessment of spinal posture and it is expected to efficiently point out trunk compensatory pattern during gait in a clinical context.


Assuntos
Marcha , Coluna Vertebral , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Postura , Amplitude de Movimento Articular , Rotação
17.
J Neural Eng ; 17(1): 016058, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31958778

RESUMO

OBJECTIVE: In the last decades, many EMG-controlled robotic devices were developed. Since stiffness control may be required to perform skillful interactions, different groups developed devices whose stiffness is real-time controlled based on EMG signal samples collected from the operator. However, this control strategy may be fatiguing. In this study, we proposed and experimentally validated a novel stiffness control strategy, based on the average muscle co-contraction estimated from EMG samples collected in the previous 1 or 2 s. APPROACH: Nine subjects performed a tracking task with their right wrist in five different sessions. In four sessions a haptic device (Hi-5) applied a sinusoidal perturbing torque. In Baseline session, co-contraction reduced the effect of the perturbation only by stiffening the wrist. In contrast, during aided sessions the perturbation amplitude was also reduced (mimicking the effect of additional stiffening provided by EMG-driven robotic device) either proportionally to the co-contraction exerted by the subject sample-by-sample (Proportional), or according to the average co-contraction exerted in the previous 1 s (Integral 1s), or 2 s (Integral 2s). Task error, metabolic cost during the tracking task, perceived fatigue, and the median EMG frequency calculated during a sub-maximal isometric torque generation tasks that alternated with the tracking were compared across sessions. MAIN RESULTS: Positive effects of the reduction of the perturbation provided by co-contraction estimation was identified in all the investigated variables. Integral 1s session showed lower metabolic cost with respect to the Proportional session, and lower perceived fatigue with respect to both the Proportional and the Integral 2s sessions. SIGNIFICANCE: This study's results showed that controlling the stiffness of an EMG-driven robotic device proportionally to the operator's co-contraction, averaged in the previous 1 s, represents the best control strategy because it required less metabolic cost and led to a lower perceived fatigue.


Assuntos
Eletromiografia/métodos , Contração Isométrica/fisiologia , Fadiga Muscular/fisiologia , Amplitude de Movimento Articular/fisiologia , Robótica/métodos , Punho/fisiologia , Adulto , Exoesqueleto Energizado , Feminino , Humanos , Masculino , Robótica/instrumentação , Adulto Jovem
18.
Acta Bioeng Biomech ; 21(3): 3-12, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798016

RESUMO

PURPOSE: Quantitative performance analysis is of great importance, especially to increase personalized training and to reduce injuries. The use of inertial sensors has given many possibilities and has been largely used in analysing technical capabilities of athletes. With respect to combat sports, judo has many issues resulting from the great number of variables involved in the techniques and due to the critical measurement environment. The aim of this study was to propose a method for measuring and quantifying motor abilities objectively. METHODS: Four inertial sensors were fixed to the lower limbs and one on the sternum of five male and five female elite judo athletes. Accelerations and angular velocities of the lower limbs were measured in 480 judo techniques. Regression lines of accelerations and angular velocities have been analysed to obtain 5 single technique indices and 1 overall technique index representing the motor abilities connected, respectively to force expressions and coordination capabilities. RESULTS: Correlations of motor abilities (force expression and coordination capabilities) and athletes' weight and height were found in only 6.7% of pairs. Results of force expression and coordination capabilities for most of the athletes are in line with their level of technical and combat experience. CONCLUSIONS: This method allowed to "photograph" athlete's technical level and to compare it in time through subsequent trials. With this innovative way, motor abilities could become evaluable and measurable, highlighting the importance of their objective quantification in order to evaluate effectiveness and efficiency of the sport technique.


Assuntos
Artes Marciais/fisiologia , Atividade Motora/fisiologia , Aceleração , Adulto , Atletas , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Análise de Regressão , Adulto Jovem
19.
Bioengineering (Basel) ; 6(3)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394803

RESUMO

In flexion-extension motion, the interaction of several ligaments and bones characterizes the elbow joint stability. The aim of this preliminary study was to quantify the relative motion of the ulna with respect to the humerus in two human upper limbs specimens and to investigate the constraints role for maintaining the elbow joint stability in different section conditions. Two clusters of four markers were fixed respectively to the ulna and humerus, and their trajectory was recorded by a motion capture system during functional orthopedic maneuver. Considering the posterior bundle of medial collateral complex (pMUCL) and the coronoid, two section sequences were executed. The orthopedic maneuver of compression, pronation and varus force was repeated at 30°, 60° and 90° flexion for the functional investigation of constraints. Ulna deflection was compared to a baseline elbow flexion condition. With respect to the intact elbow, the coronoid osteotomy influences the elbow stability at 90° (deflection = 11.49 ± 17.39 mm), while small differences occur at 30° and 60°, due to ligaments constraint. The contemporary pMUCL section and coronoid osteotomy causes elbow instability, with large deflection at 30° (deflection = 34.40 ± 9.10 mm), 60° (deflection = 45.41 ± 18.47 mm) and 90° (deflection = 52.16 ± 21.92 mm). Surgeons may consider the pMUCL reconstruction in case of unfixable coronoid fracture.

20.
Chemosphere ; 219: 989-996, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30682764

RESUMO

Mercury (Hg) is a global priority pollutant given its relevance in terms of environmental damage and threat to human health. Its ecotoxicity was tested using the benthic keystone species Hediste diversicolor as target species. After 10 days of exposure to different levels of inorganic Hg (10 and 50 µg L-1), bioaccumulation and a wide range of biological responses were evaluated at different biological levels, including biomarkers of exposure, neurotoxicity, oxidative stress, genotoxicity and cytochemistry. In controlled laboratory conditions, Hg was taken up by H. diversicolor in a dose-response manner and caused a range of biological responses, including oxidative stress (GSTs, GPx, GSH-2GSSG, and TOSCA), neurotoxicity (AChE), and cellular damages at the membrane level (LFs, NLs, Ca2+-ATPase); however, it did not cause significant DNA damage or mortality. This study confirms the capability of H. diversicolor to tolerate high levels of metals and clarifies the mechanisms underlying the damage caused by waterborne Hg and the defense mechanisms, activated in this species. In particular, detoxification of the inorganic form of Hg in this species was found to be strongly related to glutathione expression and several antioxidant enzymes of the antioxidant system. This process also efficiently minimized negative effects on DNA and prevented death, but was not sufficient to avoid neurotoxicity and some cellular damages, mainly at the intestinal level.


Assuntos
Exposição Ambiental , Mercúrio/toxicidade , Poliquetos/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Biomarcadores/análise , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA