Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
Nat Rev Genet ; 22(4): 251-262, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33257848

RESUMO

Intratumour heterogeneity and phenotypic plasticity, sustained by a range of somatic aberrations, as well as epigenetic and metabolic adaptations, are the principal mechanisms that enable cancers to resist treatment and survive under environmental stress. A comprehensive picture of the interplay between different somatic aberrations, from point mutations to whole-genome duplications, in tumour initiation and progression is lacking. We posit that different genomic aberrations generally exhibit a temporal order, shaped by a balance between the levels of mutations and selective pressures. Repeat instability emerges first, followed by larger aberrations, with compensatory effects leading to robust tumour fitness maintained throughout the tumour progression. A better understanding of the interplay between genetic aberrations, the microenvironment, and epigenetic and metabolic cellular states is essential for early detection and prevention of cancer as well as development of efficient therapeutic strategies.


Assuntos
Adaptação Fisiológica/genética , Epigênese Genética/genética , Neoplasias/genética , Microambiente Tumoral/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Mutação/genética , Neoplasias/patologia
2.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38493345

RESUMO

The evolution of drug resistance leads to treatment failure and tumor progression. Intermittent androgen deprivation therapy (IADT) helps responsive cancer cells compete with resistant cancer cells in intratumoral competition. However, conventional IADT is population-based, ignoring the heterogeneity of patients and cancer. Additionally, existing IADT relies on pre-determined thresholds of prostate-specific antigen to pause and resume treatment, which is not optimized for individual patients. To address these challenges, we framed a data-driven method in two steps. First, we developed a time-varied, mixed-effect and generative Lotka-Volterra (tM-GLV) model to account for the heterogeneity of the evolution mechanism and the pharmacokinetics of two ADT drugs Cyproterone acetate and Leuprolide acetate for individual patients. Then, we proposed a reinforcement-learning-enabled individualized IADT framework, namely, I$^{2}$ADT, to learn the patient-specific tumor dynamics and derive the optimal drug administration policy. Experiments with clinical trial data demonstrated that the proposed I$^{2}$ADT can significantly prolong the time to progression of prostate cancer patients with reduced cumulative drug dosage. We further validated the efficacy of the proposed methods with a recent pilot clinical trial data. Moreover, the adaptability of I$^{2}$ADT makes it a promising tool for other cancers with the availability of clinical data, where treatment regimens might need to be individualized based on patient characteristics and disease dynamics. Our research elucidates the application of deep reinforcement learning to identify personalized adaptive cancer therapy.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Antagonistas de Androgênios/uso terapêutico , Androgênios/uso terapêutico
3.
Semin Cancer Biol ; 102-103: 17-24, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969311

RESUMO

Oxygen played a pivotal role in the evolution of multicellularity during the Cambrian Explosion. Not surprisingly, responses to fluctuating oxygen concentrations are integral to the evolution of cancer-a disease characterized by the breakdown of multicellularity. Poorly organized tumor vasculature results in chaotic patterns of blood flow characterized by large spatial and temporal variations in intra-tumoral oxygen concentrations. Hypoxia-inducible growth factor (HIF-1) plays a pivotal role in enabling cells to adapt, metabolize, and proliferate in low oxygen conditions. HIF-1 is often constitutively activated in cancers, underscoring its importance in cancer progression. Here, we argue that the phenotypic changes mediated by HIF-1, in addition to adapting the cancer cells to their local environment, also "pre-adapt" them for proliferation at distant, metastatic sites. HIF-1-mediated adaptations include a metabolic shift towards anaerobic respiration or glycolysis, activation of cell survival mechanisms like phenotypic plasticity and epigenetic reprogramming, and formation of tumor vasculature through angiogenesis. Hypoxia induced epigenetic reprogramming can trigger epithelial to mesenchymal transition in cancer cells-the first step in the metastatic cascade. Highly glycolytic cells facilitate local invasion by acidifying the tumor microenvironment. New blood vessels, formed due to angiogenesis, provide cancer cells a conduit to the circulatory system. Moreover, survival mechanisms acquired by cancer cells in the primary site allow them to remodel tissue at the metastatic site generating tumor promoting microenvironment. Thus, hypoxia in the primary tumor promoted adaptations conducive to all stages of the metastatic cascade from the initial escape entry into a blood vessel, intravascular survival, extravasation into distant tissues, and establishment of secondary tumors.

4.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33452133

RESUMO

The harsh microenvironment of ductal carcinoma in situ (DCIS) exerts strong evolutionary selection pressures on cancer cells. We hypothesize that the poor metabolic conditions near the ductal center foment the emergence of a Warburg Effect (WE) phenotype, wherein cells rapidly ferment glucose to lactic acid, even in normoxia. To test this hypothesis, we subjected low-glycolytic breast cancer cells to different microenvironmental selection pressures using combinations of hypoxia, acidosis, low glucose, and starvation for many months and isolated single clones for metabolic and transcriptomic profiling. The two harshest conditions selected for constitutively expressed WE phenotypes. RNA sequencing analysis of WE clones identified the transcription factor KLF4 as potential inducer of the WE phenotype. In stained DCIS samples, KLF4 expression was enriched in the area with the harshest microenvironmental conditions. We simulated in vivo DCIS phenotypic evolution using a mathematical model calibrated from the in vitro results. The WE phenotype emerged in the poor metabolic conditions near the necrotic core. We propose that harsh microenvironments within DCIS select for a WE phenotype through constitutive transcriptional reprogramming, thus conferring a survival advantage and facilitating further growth and invasion.


Assuntos
Neoplasias da Mama/genética , Carcinoma Intraductal não Infiltrante/genética , Fatores de Transcrição Kruppel-Like/genética , Efeito Warburg em Oncologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Glicólise/genética , Humanos , Fator 4 Semelhante a Kruppel , Células MCF-7 , Estadiamento de Neoplasias , Hipóxia Tumoral/genética , Microambiente Tumoral/genética
5.
Bioinformatics ; 38(16): 4002-4010, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35751591

RESUMO

MOTIVATION: Time-lapse microscopy is a powerful technique that relies on images of live cells cultured ex vivo that are captured at regular intervals of time to describe and quantify their behavior under certain experimental conditions. This imaging method has great potential in advancing the field of precision oncology by quantifying the response of cancer cells to various therapies and identifying the most efficacious treatment for a given patient. Digital image processing algorithms developed so far require high-resolution images involving very few cells originating from homogeneous cell line populations. We propose a novel framework that tracks cancer cells to capture their behavior and quantify cell viability to inform clinical decisions in a high-throughput manner. RESULTS: The brightfield microscopy images a large number of patient-derived cells in an ex vivo reconstruction of the tumor microenvironment treated with 31 drugs for up to 6 days. We developed a robust and user-friendly pipeline CancerCellTracker that detects cells in co-culture, tracks these cells across time and identifies cell death events using changes in cell attributes. We validated our computational pipeline by comparing the timing of cell death estimates by CancerCellTracker from brightfield images and a fluorescent channel featuring ethidium homodimer. We benchmarked our results using a state-of-the-art algorithm implemented in ImageJ and previously published in the literature. We highlighted CancerCellTracker's efficiency in estimating the percentage of live cells in the presence of bone marrow stromal cells. AVAILABILITY AND IMPLEMENTATION: https://github.com/compbiolabucf/CancerCellTracker. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Microscopia/métodos , Imagem com Lapso de Tempo , Software , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Medicina de Precisão , Algoritmos , Microambiente Tumoral
6.
Pancreatology ; 22(6): 730-740, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35821188

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), the most common histological subtype of pancreatic cancer, is an aggressive disease predicted to be the 2nd cause of cancer mortality in the US by 2040. While first-line therapy has improved, 5-year overall survival has only increased from 5 to ∼10%, and surgical resection is only available for ∼20% of patients as most present with advanced disease, which is invariably lethal. PDAC has well-established highly recurrent mutations in four driver genes including KRAS, TP53, CDKN2A, and SMAD4. Unfortunately, these genetic drivers are not currently therapeutically actionable. Despite extensive sequencing efforts, few additional significantly recurrent and druggable drivers have been identified. In the absence of targetable mutations, chemotherapy remains the mainstay of treatment for most patients. Further, the role of the above driver mutations on PDAC initiation and early development is well-established. However, these mutations alone cannot account for PDAC heterogeneity nor discern early from advanced disease. Taken together, management of PDAC is an example highlighting the shortcomings of the current precision medicine paradigm. PDAC, like other malignancies, represents an ecoevolutionary process. Better understanding the disease through this lens can facilitate the development of novel therapeutic strategies to better control and cure PDAC. This review aims to integrate the current understanding of PDAC pathobiology into an ecoevolutionary framework.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Biologia , Carcinoma Ductal Pancreático/patologia , Humanos , Mutação , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
8.
Br J Cancer ; 124(2): 455-465, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33024265

RESUMO

BACKGROUND: Cancer progression is governed by evolutionary dynamics in both the tumour population and its host. Since cancers die with the host, each new population of cancer cells must reinvent strategies to overcome the host's heritable defences. In contrast, host species evolve defence strategies over generations if tumour development limits procreation. METHODS: We investigate this "evolutionary arms race" through intentional breeding of immunodeficient SCID and immunocompetent Black/6 mice to evolve increased tumour suppression. Over 10 generations, we injected Lewis lung mouse carcinoma cells [LL/2-Luc-M38] and selectively bred the two individuals with the slowest tumour growth at day 11. Their male progeny were hosts in the subsequent round. RESULTS: The evolved SCID mice suppressed tumour growth through biomechanical restriction from increased mesenchymal proliferation, and the evolved Black/6 mice suppressed tumour growth by increasing immune-mediated killing of cancer cells. However, transcriptomic changes of multicellular tissue organisation and function genes allowed LL/2-Luc-M38 cells to adapt through increased matrix remodelling in SCID mice, and reduced angiogenesis, increased energy utilisation and accelerated proliferation in Black/6 mice. CONCLUSION: Host species can rapidly evolve both immunologic and non-immunologic tumour defences. However, cancer cell plasticity allows effective phenotypic and population-based counter strategies.


Assuntos
Adaptação Fisiológica/fisiologia , Evolução Biológica , Carcinoma Pulmonar de Lewis , Plasticidade Celular/fisiologia , Resistência à Doença/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID
9.
PLoS Biol ; 16(10): e2007066, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30278037

RESUMO

Research suggests that progression-free survival can be prolonged by integrating evolutionary principles into clinical cancer treatment protocols. The goal is to prevent or slow the proliferation of resistant malignant cell populations. The logic behind this therapy relies on ecological and evolutionary processes. These same processes would be available to natural selection in decreasing the probability of an organism's death due to cancer. We propose that organisms' anticancer adaptions include not only ones for preventing cancer but also ones for directing and retarding the evolution of life-threatening cancer cells. We term this last strategy natural adaptive therapy (NAT). The body's NAT might include a lower than otherwise possible immune response. A restrained immune response might forego maximum short-term kill rates. Restraint would forestall immune-resistant cancer cells and produce long-term durable control of the cancer population. Here, we define, develop, and explore the possibility of NAT. The discovery of NAT mechanisms could identify new strategies in tumor prevention and treatments. Furthermore, we discuss the potential risks of immunotherapies that force the immune system to ramp up the short-term kill rates of malignant cancer cells in a manner that undermines the body's NAT and accelerates the evolution of immune resistance.


Assuntos
Imunoterapia/métodos , Neoplasias/terapia , Imunidade Adaptativa , Animais , Evolução Biológica , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Humanos , Imunidade Inata , Modelos Biológicos , Neoplasias/imunologia , Neoplasias/patologia
10.
Anesth Analg ; 133(3): 676-689, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34100781

RESUMO

Preclinical and clinical studies have sought to better understand the effect of anesthetic agents, both volatile and intravenous, and perioperative adjuvant medications on immune function. The immune system has evolved to incorporate both innate and adaptive components, which are delicately interwoven and essential for host defense from pathogens and malignancy. This review summarizes the complex and nuanced relationship that exists between each anesthetic agent or perioperative adjuvant medication studied and innate and adaptive immune function with resultant clinical implications. The most commonly used anesthetic agents were chosen for review including volatile agents (sevoflurane, isoflurane, desflurane, and halothane), intravenous agents (propofol, ketamine, etomidate, and dexmedetomidine), and perioperative adjuvant medications (benzodiazepines, opioids, nonsteroidal anti-inflammatory drugs [NSAIDs], and local anesthetic agents). Patients who undergo surgery experience varying combinations of the aforementioned anesthetic agents and adjuncts, depending on the type of surgery and their comorbidities. Each has unique effects on immunity, which may be more or less ideal depending on the clinical situation. Further study is needed to better understand the clinical effects of these relationships so that patient-specific strategies can be developed to improve surgical outcomes.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Adjuvantes Anestésicos/uso terapêutico , Anestesia por Inalação , Anestesia Intravenosa , Anestésicos Inalatórios/uso terapêutico , Anestésicos Intravenosos/uso terapêutico , Sistema Imunitário/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Assistência Perioperatória , Adjuvantes Anestésicos/efeitos adversos , Anestesia por Inalação/efeitos adversos , Anestesia Intravenosa/efeitos adversos , Anestésicos Inalatórios/efeitos adversos , Anestésicos Intravenosos/efeitos adversos , Animais , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/fisiopatologia , Assistência Perioperatória/efeitos adversos , Complicações Pós-Operatórias/induzido quimicamente , Complicações Pós-Operatórias/imunologia , Fatores de Risco
11.
BMC Evol Biol ; 20(1): 75, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32590933

RESUMO

BACKGROUND: We hypothesize prebiotic evolution of self-replicating macro-molecules (Alberts, Molecular biology of the cell, 2015; Orgel, Crit Rev Biochem Mol Biol 39:99-123, 2004; Hud, Nat Commun 9:5171) favoured the constituent nucleotides and biophysical properties observed in the RNA and DNA of modern organisms. Assumed initial conditions are a shallow tide pool, containing a racemic mix of diverse nucleotide monomers (Barks et al., Chembiochem 11:1240-1243, 2010; Krishnamurthy, Nat Commun 9:5175, 2018; Hirao, Curr Opin Chem Biol 10:622-627), subject to day/night thermal fluctuations (Piccirilli et al., Nature 343:33-37, 1990). Self-replication, like Polymerase Chain Reactions, followed as higher daytime thermal energy "melted" inter-strand hydrogen bonds causing strand separation while solar UV radiation increased prebiotic nucleobase formation (Szathmary, Proc Biol Sci 245:91-99, 1991; Materese et al., Astrobiology 17:761-770, 2017; Bera et al., Astrobiology 17:771-785, 2017). Lower night energies allowed free monomers to form hydrogen bonds with their template counterparts leading to daughter strand synthesis (Hirao, Biotechniques 40:711, 2006). RESULTS: Evolutionary selection favoured increasing strand length to maximize auto-catalytic function in RNA and polymer stability in double stranded DNA (Krishnamurthy, Chemistry 24:16708-16715, 2018; Szathmary, Nat Rev Genet 4:995-1001, 2003). However, synthesis of the full daughter strand before daytime temperatures produced strand separation, longer polymer length required increased speed of self-replication. Computer simulations demonstrate optimal polynucleotide autocatalytic speed is achieved when the constituent nucleotides possess a left-right asymmetry that decreases the hydrogen bond kinetic barrier for the free nucleotide attachment to the template on one side and increases bond barrier on the other side preventing it from releasing prior to covalent bond formation. This phenomenon is similar to asymmetric kinetics observed during polymerization of the front and the back ends of linear cytoskeletal proteins such as actin and microtubules (Orgel, Nature 343:18-20, 1990; Henry, Curr Opin Chem Biol 7:727-733, 2003; Walker et al., J Cell Biol 108:931-937, 1989; Crevenna et al., J Biol Chem 288:12102-12113, 2013). Since rotation of the nucleotide would disrupt the asymmetry, the optimal nucleotides must form two or more hydrogen bonds with their counterpart on the template strand. All nucleotides in modern RNA and DNA have these predicted properties. Our models demonstrate these constraints on the properties of constituent monomers result in biophysical properties found in modern DNA and RNA including strand directionality, anti-parallel strand orientation, homochirality, quadruplet alphabet, and complementary base pairing. Furthermore, competition between RNA and DNA auto-replicators for 3 nucleotides in common permit states coexistence and possible cooperative interactions that could be incorporated into nascent living systems. CONCLUSION: Our findings demonstrate the molecular properties of DNA/RNA could have emerged from Darwinian competition among macromolecular replicators that selected nucleotide monomers that maximized the speed of autocatalysis.


Assuntos
Replicação do DNA , DNA/biossíntese , Polinucleotídeos/biossíntese , RNA/biossíntese , DNA/genética , Cinética , Polinucleotídeos/genética , RNA/genética
13.
BMC Cancer ; 20(1): 447, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32429869

RESUMO

BACKGROUND: Sex is recognized as a significant determinant of outcome among glioblastoma patients, but the relative prognostic importance of glioblastoma features has not been thoroughly explored for sex differences. METHODS: Combining multi-modal MR images, biomathematical models, and patient clinical information, this investigation assesses which pretreatment variables have a sex-specific impact on the survival of glioblastoma patients (299 males and 195 females). RESULTS: Among males, tumor (T1Gd) radius was a predictor of overall survival (HR = 1.027, p = 0.044). Among females, higher tumor cell net invasion rate was a significant detriment to overall survival (HR = 1.011, p < 0.001). Female extreme survivors had significantly smaller tumors (T1Gd) (p = 0.010 t-test), but tumor size was not correlated with female overall survival (p = 0.955 CPH). Both male and female extreme survivors had significantly lower tumor cell net proliferation rates than other patients (M p = 0.004, F p = 0.001, t-test). CONCLUSION: Despite similar distributions of the MR imaging parameters between males and females, there was a sex-specific difference in how these parameters related to outcomes.


Assuntos
Neoplasias Encefálicas/mortalidade , Glioblastoma/mortalidade , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Criança , Feminino , Seguimentos , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Prognóstico , Estudos Retrospectivos , Fatores Sexuais , Taxa de Sobrevida , Adulto Jovem
14.
PLoS Comput Biol ; 15(11): e1007372, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31682599

RESUMO

Intracellular thermometry has recently demonstrated temperatures in the nucleus, mitochondria, and centrosome to be significantly higher than those of the cytoplasm and cell membrane. This local thermogenesis and the resulting temperature gradient could facilitate the development of persistent, self-organizing convection currents in the cytoplasm of large eukaryotes. Using 3-dimensional computational simulations of intracellular fluid motion, we quantify the convective velocities that could result from the temperature differences observed experimentally. Based on these velocities, we identify the conditions necessary for this temperature-driven bulk flow to dominate over random thermal diffusive motion at the scale of a single eukaryotic cell. With temperature gradients of the order 1°C and diffusion coefficients comparable to those described in the literature, Péclet numbers ≥ 1 are feasible and permit comparable or greater effects of convection than diffusion in determining intracellular mass flux. In addition to the temperature gradient, the resulting flow patterns would also depend on the spatial localization of the heat source, the shape of the cell membrane, and the complex intracellular structure including the cytoskeleton. While this intracellular convection would be highly context-dependent, in certain settings, convective motion could provide a previously unrecognized mechanism for directed, bulk transport within eukaryotic cells.


Assuntos
Citoplasma/fisiologia , Citosol/metabolismo , Temperatura , Simulação por Computador , Convecção , Citoplasma/metabolismo , Citoesqueleto/fisiologia , Difusão , Hidrodinâmica , Líquido Intracelular/metabolismo , Modelos Teóricos
15.
Cancer Control ; 27(1): 1073274820942356, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33054362

RESUMO

Despite a century of intense investigation, cancer biology and treatment remain plagued by unanswered questions. Even basic questions regarding the fundamental forces driving the formation of cancer remain controversial. Recent approaches view cancer in the context of a complex web of interactions among cancer cells of the tumor, together with their interactions with the many cells and constituents of the complex and highly dynamic tumor microenvironment. As seen in this special collection, we believe that viewing cancer as a process of evolution driven by ongoing ecological processes playing out within a dynamic environment offers many insights and potential new pathways for cancer control.


Assuntos
Evolução Biológica , Ecossistema , Neoplasias/prevenção & controle , Humanos , Neoplasias/genética , Neoplasias/patologia , Publicações , Microambiente Tumoral/fisiologia
16.
Cancer Control ; 27(3): 1073274820945980, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32762341

RESUMO

Uniquely in nature, living systems must acquire, store, and act upon information. The survival and replicative fate of each normal cell in a multicellular organism is determined solely by information obtained from its surrounding tissue. In contrast, cancer cells as single-cell eukaryotes live in a disrupted, heterogeneous environment with opportunities and hazards. Thus, cancer cells, unlike normal somatic cells, must constantly obtain information from their environment to ensure survival and proliferation. In this study, we build upon a simple mathematical modeling framework developed to predict (1) how information promotes population persistence in a highly heterogeneous environment and (2) how disruption of information resulting from habitat fragmentation increases the probability of population extinction. Because (1) tumors grow in a highly heterogeneous microenvironment and (2) many cancer therapies fragment tumors into isolated, small cancer cell populations, we identify parallels between these 2 systems and develop ideas for cancer cure based on lessons gleaned from Anthropocene extinctions. In many Anthropocene extinctions, such as that of the North American heath hen (Tympanuchus cupido cupido), a large and widespread population was initially reduced and fragmented owing to overexploitation by humans (a "first strike"). After this, the small surviving populations are vulnerable to extinction from environmental or demographic stochastic disturbances (a "second strike"). Following this analogy, after a tumor is fragmented into small populations of isolated cancer cells by an initial therapy, additional treatment can be applied with the intent of extinction (cure). Disrupting a cancer cell's ability to acquire and use information in a heterogeneous environment may be an important tactic for causing extinction following an effective initial therapy. Thus, information, from the scale of cells within tumors to that of species within ecosystems, can be used to identify vulnerabilities to extinction and opportunities for novel treatment strategies.


Assuntos
Ecossistema , Neoplasias/terapia , Citoesqueleto/fisiologia , Humanos , Integrinas/fisiologia , Modelos Teóricos , Neoplasias/patologia , Microambiente Tumoral
17.
Cancer Control ; 27(1): 1073274820965575, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33070618

RESUMO

The surgical stress and inflammatory response and volatile anesthetic agents have been shown to promote tumor metastasis in animal and in-vitro studies. Regional neuraxial anesthesia protects against these effects by decreasing the surgical stress and inflammatory response and associated changes in immune function in animals. However, evidence of a similar effect in humans remains equivocal due to the high variability and retrospective nature of clinical studies and difficulty in directly comparing regional versus general anesthesia in humans. We propose a theoretical framework to address the question of regional anesthesia as protective against metastasis.This theoretical construct views the immune system, circulating tumor cells, micrometastases, and inflammatory mediators as distinct populations in a highly connected system. In ecological theory, highly connected populations demonstrate more resilience to local perturbations but are prone to system-wide shifts compared with their poorly connected counterparts. Neuraxial anesthesia transforms the otherwise system-wide perturbations of the surgical stress and inflammatory response and volatile anesthesia into a comparatively local perturbation to which the system is more resilient. We propose this framework for experimental and mathematical models to help determine the impact of anesthetic choice on recurrence and metastasis and create therapeutic strategies to improve cancer outcomes after surgery.


Assuntos
Anestesia Geral/estatística & dados numéricos , Inflamação/prevenção & controle , Modelos Teóricos , Recidiva Local de Neoplasia/prevenção & controle , Neoplasias/cirurgia , Anestesia por Condução/métodos , Anestesia por Condução/estatística & dados numéricos , Anestesia Geral/efeitos adversos , Animais , Humanos , Inflamação/etiologia , Metástase Neoplásica , Recidiva Local de Neoplasia/etiologia , Neoplasias/epidemiologia , Neoplasias/patologia
18.
Biochim Biophys Acta Rev Cancer ; 1867(2): 162-166, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28341421

RESUMO

The origin and progression of cancer is widely viewed as "somatic evolution" driven by the accumulation of random genetic changes. This theoretical model, however, neglects fundamental conditions for evolution by natural selection, which include competition for survival and a local environmental context. Recent observations that the mutational burden in different cancers can vary by 2 orders of magnitude and that multiple mutations, some of which are "oncogenic," are observed in normal tissue suggests these neglected Darwinian dynamics may play a critical role in modifying the evolutionary consequences of molecular events. Here we discuss evolutionary principles in normal tissue focusing on the dynamical tension between different evolutionary levels of selection. Normal somatic cells within metazoans do not ordinarily evolve because their survival and proliferation are governed by tissue signals and internal controls (e.g. telomere shortening) that maintain homeostatic function. The fitness of each cell is, thus, identical to the whole organism, which is the evolutionary level of selection. For a cell to evolve, it must acquire a self-defined fitness function so that its survival and proliferation is determined entirely by its own heritable phenotypic properties. Cells can develop independence from normal tissue control through randomly accumulating mutations that disrupt its ability to recognize or respond to all host signals. A self-defined fitness function can also be gained non-genetically when tissue control signals are lost due to injury, inflammation, or infection. Accumulating mutations in cells without a self-defined fitness function will produce no evolution - consistent with reports showing mutations, including some that would ordinarily be oncogenic, are present in cells from normal tissue. Furthermore, once evolution begins, Darwinian forces will promote mutations that increase fitness and eliminate those that do not. Thus, cancer cells will typically have a mutational burden similar to adjacent normal cells and many (perhaps most) mutations observed in cancer cells occurred prior to somatic evolution and may not contribute to the cell's malignant phenotype. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby.


Assuntos
Biomarcadores Tumorais/genética , Transformação Celular Neoplásica/genética , Evolução Molecular , Aptidão Genética , Mutação , Neoplasias/genética , Adaptação Fisiológica , Animais , Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Hereditariedade , Humanos , Modelos Genéticos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Linhagem , Fenótipo , Transdução de Sinais/genética , Fatores de Tempo
19.
Bull Math Biol ; 82(6): 81, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32556703

RESUMO

The disordered network of blood vessels that arises from tumour angiogenesis results in variations in the delivery of oxygen into the tumour tissue. This brings about regions of chronic hypoxia (i.e. sustained low oxygen levels) and regions with alternating periods of low and relatively higher oxygen levels, and makes it necessary for cancer cells to adapt to fluctuating environmental conditions. We use a phenotype-structured model to dissect the evolutionary dynamics of cell populations exposed to fluctuating oxygen levels. In this model, the phenotypic state of every cell is described by a continuous variable that provides a simple representation of its metabolic phenotype, ranging from fully oxidative to fully glycolytic, and cells are grouped into two competing populations that undergo heritable, spontaneous phenotypic variations at different rates. Model simulations indicate that, depending on the rate at which oxygen is consumed by the cells, dynamic nonlinear interactions between cells and oxygen can stimulate chronic hypoxia and cycling hypoxia. Moreover, the model supports the idea that under chronic-hypoxic conditions lower rates of phenotypic variation lead to a competitive advantage, whereas higher rates of phenotypic variation can confer a competitive advantage under cycling-hypoxic conditions. In the latter case, the numerical results obtained show that bet-hedging evolutionary strategies, whereby cells switch between oxidative and glycolytic phenotypes, can spontaneously emerge. We explain how these results can shed light on the evolutionary process that may underpin the emergence of phenotypic heterogeneity in vascularised tumours.


Assuntos
Adaptação Fisiológica , Modelos Biológicos , Neoplasias/metabolismo , Oxigênio/metabolismo , Biologia Computacional , Simulação por Computador , Glicólise , Humanos , Conceitos Matemáticos , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica , Dinâmica não Linear , Oxirredução , Consumo de Oxigênio , Fenótipo , Processos Estocásticos , Hipóxia Tumoral/fisiologia
20.
Bull Math Biol ; 82(7): 91, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32648152

RESUMO

Modern cancer research, and the wealth of data across multiple spatial and temporal scales, has created the need for researchers that are well versed in the life sciences (cancer biology, developmental biology, immunology), medical sciences (oncology) and natural sciences (mathematics, physics, engineering, computer sciences). College undergraduate education traditionally occurs in disciplinary silos, which creates a steep learning curve at the graduate and postdoctoral levels that increasingly bridge multiple disciplines. Numerous colleges have begun to embrace interdisciplinary curricula, but students who double major in mathematics (or other quantitative sciences) and biology (or medicine) remain scarce. We identified the need to educate junior and senior high school students about integrating mathematical and biological skills, through the lens of mathematical oncology, to better prepare students for future careers at the interdisciplinary interface. The High school Internship Program in Integrated Mathematical Oncology (HIP IMO) at Moffitt Cancer Center has so far trained 59 students between 2015 and 2019. We report here on the program structure, training deliverables, curriculum and outcomes. We hope to promote interdisciplinary educational activities early in a student's career.


Assuntos
Currículo , Estudos Interdisciplinares , Matemática/educação , Oncologia/educação , Adolescente , Feminino , Florida , Humanos , Pesquisa Interdisciplinar/educação , Masculino , Neoplasias , Organizações sem Fins Lucrativos , Instituições Acadêmicas , Estudantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA