Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 598(7880): 353-358, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34588695

RESUMO

Time-restricted feeding (TRF) has recently gained interest as a potential anti-ageing treatment for organisms from Drosophila to humans1-5. TRF restricts food intake to specific hours of the day. Because TRF controls the timing of feeding, rather than nutrient or caloric content, TRF has been hypothesized to depend on circadian-regulated functions; the underlying molecular mechanisms of its effects remain unclear. Here, to exploit the genetic tools and well-characterized ageing markers of Drosophila, we developed an intermittent TRF (iTRF) dietary regimen that robustly extended fly lifespan and delayed the onset of ageing markers in the muscles and gut. We found that iTRF enhanced circadian-regulated transcription and that iTRF-mediated lifespan extension required both circadian regulation and autophagy, a conserved longevity pathway. Night-specific induction of autophagy was both necessary and sufficient to extend lifespan on an ad libitum diet and also prevented further iTRF-mediated lifespan extension. By contrast, day-specific induction of autophagy did not extend lifespan. Thus, these results identify circadian-regulated autophagy as a critical contributor to iTRF-mediated health benefits in Drosophila. Because both circadian regulation and autophagy are highly conserved processes in human ageing, this work highlights the possibility that behavioural or pharmaceutical interventions that stimulate circadian-regulated autophagy might provide people with similar health benefits, such as delayed ageing and lifespan extension.


Assuntos
Autofagia/fisiologia , Ritmo Circadiano/fisiologia , Drosophila melanogaster/fisiologia , Comportamento Alimentar/fisiologia , Longevidade/fisiologia , Envelhecimento/genética , Envelhecimento/efeitos da radiação , Animais , Autofagia/genética , Biomarcadores , Relógios Circadianos/efeitos da radiação , Ritmo Circadiano/genética , Ritmo Circadiano/efeitos da radiação , Escuridão , Drosophila melanogaster/genética , Drosophila melanogaster/efeitos da radiação , Comportamento Alimentar/efeitos da radiação , Feminino , Longevidade/genética , Longevidade/efeitos da radiação , Masculino , Fatores de Tempo
2.
Sci Rep ; 14(1): 1541, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233464

RESUMO

Mutations in Cullin-3 (Cul3), a conserved gene encoding a ubiquitin ligase, are strongly associated with autism spectrum disorder (ASD). Here, we characterize ASD-related pathologies caused by neuron-specific Cul3 knockdown in Drosophila. We confirmed that neuronal Cul3 knockdown causes short sleep, paralleling sleep disturbances in ASD. Because sleep defects and ASD are linked to metabolic dysregulation, we tested the starvation response of neuronal Cul3 knockdown flies; they starved faster and had lower triacylglyceride levels than controls, suggesting defects in metabolic homeostasis. ASD is also characterized by increased biomarkers of oxidative stress; we found that neuronal Cul3 knockdown increased sensitivity to hyperoxia, an exogenous oxidative stress. Additional hallmarks of ASD are deficits in social interactions and learning. Using a courtship suppression assay that measures social interactions and memory of prior courtship, we found that neuronal Cul3 knockdown reduced courtship and learning compared to controls. Finally, we found that neuronal Cul3 depletion alters the anatomy of the mushroom body, a brain region required for memory and sleep. Taken together, the ASD-related phenotypes of neuronal Cul3 knockdown flies establish these flies as a genetic model to study molecular and cellular mechanisms underlying ASD pathology, including metabolic and oxidative stress dysregulation and neurodevelopment.


Assuntos
Transtorno do Espectro Autista , Proteínas de Drosophila , Animais , Transtorno do Espectro Autista/genética , Proteínas Culina/genética , Proteínas Culina/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neurônios/metabolismo
3.
Mol Cell Biol ; 38(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29084810

RESUMO

Both systemic insulin resistance and tissue-specific insulin resistance have been described in Drosophila and are accompanied by many indicators of metabolic disease. The downstream mediators of insulin-resistant pathophysiology remain unclear. We analyzed insulin signaling in the fat body studying loss and gain of function. When expression of the sole Drosophila insulin receptor (InR) was reduced in larval fat bodies, animals exhibited developmental delay and reduced size in a diet-dependent manner. Fat body InR knockdown also led to reduced survival on high-sugar diets. To look downstream of InR at potential mediators of insulin resistance, transcriptome sequencing (RNA-seq) studies in insulin-resistant fat bodies revealed differential expression of genes, including those involved in innate immunity. Obesity-associated insulin resistance led to increased susceptibility of flies to infection, as in humans. Reduced innate immunity was dependent on fat body InR expression. The peptidoglycan recognition proteins (PGRPs) PGRP-SB2 and PGRP-SC2 were selected for further study based on differential expression studies. Downregulating PGRP-SB2 selectively in the fat body protected animals from the deleterious effects of overnutrition, whereas downregulating PGRP-SC2 produced InR-like phenotypes. These studies extend earlier work linking the immune and insulin signaling pathways and identify new targets of insulin signaling that could serve as potential drug targets to treat type 2 diabetes.


Assuntos
Corpo Adiposo/imunologia , Corpo Adiposo/metabolismo , Resistência à Insulina/imunologia , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Dieta , Proteínas de Drosophila/imunologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica/métodos , Imunidade Inata/imunologia , Resistência à Insulina/fisiologia , Receptor de Insulina/genética , Transdução de Sinais
4.
Genetics ; 208(4): 1643-1656, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29487137

RESUMO

Insulin resistance is associated with obesity, cardiovascular disease, non-alcoholic fatty liver disease, and type 2 diabetes. These complications are exacerbated by a high-calorie diet, which we used to model type 2 diabetes in Drosophila melanogaster Our studies focused on the fat body, an adipose- and liver-like tissue that stores fat and maintains circulating glucose. A gene regulatory network was constructed to predict potential regulators of insulin signaling in this tissue. Genomic characterization of fat bodies suggested a central role for the transcription factor Seven-up (Svp). Here, we describe a new role for Svp as a positive regulator of insulin signaling. Tissue-specific loss-of-function showed that Svp is required in the fat body to promote glucose clearance, lipid turnover, and insulin signaling. Svp appears to promote insulin signaling, at least in part, by inhibiting ecdysone signaling. Svp also impairs the immune response possibly via inhibition of antimicrobial peptide expression in the fat body. Taken together, these studies show that gene regulatory networks can help identify positive regulators of insulin signaling and metabolic homeostasis using the Drosophila fat body.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Insulina/metabolismo , Receptores de Esteroides/metabolismo , Transdução de Sinais , Tecido Adiposo , Ração Animal , Animais , Proteínas de Ligação a DNA/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Dislipidemias/etiologia , Dislipidemias/metabolismo , Metabolismo Energético , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Glucose/metabolismo , Homeostase , Masculino , Metaboloma , Metabolômica/métodos , Ligação Proteica , Receptores de Esteroides/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA