Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 86(2): 1138-45, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24359440

RESUMO

An AccQ•Tag ultra performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry (AccQ•Tag-UPLC-PDA-ESI-MS) method is presented here for the fast, robust, and sensitive quantification of (15)N isotopologue enrichment of amino acids in biological samples, as for example in the special biotic interaction between the cultivated specie Brassica napus (rapeseed) and the parasitic weed Phelipanche ramosa (broomrape). This method was developed and validated using amino acid standard solutions containing (15)N amino acid isotopologues and/or biological unlabeled extracts. Apparatus optimization, limits of detection and quantification, quantification reproducibility, and calculation method of (15)N isotopologue enrichment are presented. Using this method, we could demonstrate that young parasite tubercles assimilate inorganic nitrogen as (15)N-ammonium when supplied directly through batch incubation but not when supplied by translocation from host root phloem, contrary to (15)N2-glutamine. (15)N2-glutamine mobility from host roots to parasite tubercles followed by its low metabolism in tubercles suggests that the host-derived glutamine acts as an important nitrogen containing storage compound in the young tubercle of Phelipanche ramosa.


Assuntos
Amônia/análise , Brassica napus/metabolismo , Glutamina/análise , Nitrogênio/análise , Orobanche/metabolismo , Raízes de Plantas/metabolismo , Amônia/metabolismo , Brassica napus/química , Brassica napus/parasitologia , Cromatografia Líquida de Alta Pressão/métodos , Glutamina/metabolismo , Limite de Detecção , Nitrogênio/metabolismo , Isótopos de Nitrogênio , Orobanche/química , Raízes de Plantas/química , Raízes de Plantas/parasitologia , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/métodos
2.
Plant Methods ; 9(1): 32, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23915294

RESUMO

BACKGROUND: Some root-parasitic plants belonging to the Orobanche, Phelipanche or Striga genus represent one of the most destructive and intractable weed problems to agricultural production in both developed and developing countries. Compared with most of the other weeds, parasitic weeds are difficult to control by conventional methods because of their life style. The main difficulties that currently limit the development of successful control methods are the ability of the parasite to produce a tremendous number of tiny seeds that may remain viable in the soil for more than 15 years. Seed germination requires induction by stimulants present in root exudates of host plants. Researches performed on these minute seeds are until now tedious and time-consuming because germination rate is usually evaluated in Petri-dish by counting germinated seeds under a binocular microscope. RESULTS: We developed an easy and fast method for germination rate determination based on a standardized 96-well plate test coupled with spectrophotometric reading of tetrazolium salt (MTT) reduction. We adapted the Mosmann's protocol for cell cultures to germinating seeds and determined the conditions of seed stimulation and germination, MTT staining and formazan salt solubilization required to obtain a linear relationship between absorbance and germination rate. Dose-response analyses were presented as applications of interest for assessing half maximal effective or inhibitory concentrations of germination stimulants (strigolactones) or inhibitors (ABA), respectively, using four parameter logistic curves. CONCLUSION: The developed MTT system is simple and accurate. It yields reproducible results for germination bioassays of parasitic plant seeds. This method is adapted to high-throughput screenings of allelochemicals (stimulants, inhibitors) or biological extracts on parasitic plant seed germination, and strengthens the investigations of distinctive features of parasitic plant germination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA