Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Genome Res ; 29(4): 602-612, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30796039

RESUMO

Cohesin consists of the SMC1-SMC3-Rad21 tripartite ring and the SA protein that interacts with Rad21. The Nipped-B protein loads cohesin topologically around chromosomes to mediate sister chromatid cohesion and facilitate long-range control of gene transcription. It is largely unknown how Nipped-B and cohesin associate specifically with gene promoters and transcriptional enhancers, or how sister chromatid cohesion is established. Here, we use genome-wide chromatin immunoprecipitation in Drosophila cells to show that SA and the Fs(1)h (BRD4) BET domain protein help recruit Nipped-B and cohesin to enhancers and DNA replication origins, whereas the MED30 subunit of the Mediator complex directs Nipped-B and Vtd in Drosophila (also known as Rad21) to promoters. All enhancers and their neighboring promoters are close to DNA replication origins and bind SA with proportional levels of cohesin subunits. Most promoters are far from origins and lack SA but bind Nipped-B and Rad21 with subproportional amounts of SMC1, indicating that they bind cohesin rings only part of the time. Genetic data show that Nipped-B and Rad21 function together with Fs(1)h to facilitate Drosophila development. These findings show that Nipped-B and cohesin are differentially targeted to enhancers and promoters, and suggest models for how SA and DNA replication help establish sister chromatid cohesion and facilitate enhancer-promoter communication. They indicate that SA is not an obligatory cohesin subunit but a factor that controls cohesin location on chromosomes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Origem de Replicação , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Ligação Proteica , Coesinas
2.
PLoS Genet ; 14(2): e1007225, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29447171

RESUMO

The cohesin complex topologically encircles chromosomes and mediates sister chromatid cohesion to ensure accurate chromosome segregation upon cell division. Cohesin also participates in DNA repair and gene transcription. The Nipped-B-Mau2 protein complex loads cohesin onto chromosomes and the Pds5-Wapl complex removes cohesin. Pds5 is also essential for sister chromatid cohesion, indicating that it has functions beyond cohesin removal. The Brca2 DNA repair protein interacts with Pds5, but the roles of this complex beyond DNA repair are unknown. Here we show that Brca2 opposes Pds5 function in sister chromatid cohesion by assaying precocious sister chromatid separation in metaphase spreads of cultured cells depleted for these proteins. By genome-wide chromatin immunoprecipitation we find that Pds5 facilitates SA cohesin subunit association with DNA replication origins and that Brca2 inhibits SA binding, mirroring their effects on sister chromatid cohesion. Cohesin binding is maximal at replication origins and extends outward to occupy active genes and regulatory sequences. Pds5 and Wapl, but not Brca2, limit the distance that cohesin extends from origins, thereby determining which active genes, enhancers and silencers bind cohesin. Using RNA-seq we find that Brca2, Pds5 and Wapl influence the expression of most genes sensitive to Nipped-B and cohesin, largely in the same direction. These findings demonstrate that Brca2 regulates sister chromatid cohesion and gene expression in addition to its canonical role in DNA repair and expand the known functions of accessory proteins in cohesin's diverse functions.


Assuntos
Proteína BRCA2/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos/genética , Proteínas de Drosophila/fisiologia , Animais , Animais Geneticamente Modificados , Proteína BRCA2/genética , Proteínas de Ciclo Celular/fisiologia , Células Cultivadas , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/genética , Reparo do DNA/genética , Drosophila/embriologia , Drosophila/genética , Proteínas de Drosophila/genética , Embrião não Mamífero , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Ligação Proteica , Coesinas
3.
PLoS Genet ; 12(9): e1006331, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27662615

RESUMO

The cohesin protein complex mediates sister chromatid cohesion and participates in transcriptional control of genes that regulate growth and development. Substantial reduction of cohesin activity alters transcription of many genes without disrupting chromosome segregation. Drosophila Nipped-B protein loads cohesin onto chromosomes, and together Nipped-B and cohesin occupy essentially all active transcriptional enhancers and a large fraction of active genes. It is unknown why some active genes bind high levels of cohesin and some do not. Here we show that the TBPH and Lark RNA-binding proteins influence association of Nipped-B and cohesin with genes and gene regulatory sequences. In vitro, TBPH and Lark proteins specifically bind RNAs produced by genes occupied by Nipped-B and cohesin. By genomic chromatin immunoprecipitation these RNA-binding proteins also bind to chromosomes at cohesin-binding genes, enhancers, and Polycomb response elements (PREs). RNAi depletion reveals that TBPH facilitates association of Nipped-B and cohesin with genes and regulatory sequences. Lark reduces binding of Nipped-B and cohesin at many promoters and aids their association with several large enhancers. Conversely, Nipped-B facilitates TBPH and Lark association with genes and regulatory sequences, and interacts with TBPH and Lark in affinity chromatography and immunoprecipitation experiments. Blocking transcription does not ablate binding of Nipped-B and the RNA-binding proteins to chromosomes, indicating transcription is not required to maintain binding once established. These findings demonstrate that RNA-binding proteins help govern association of sister chromatid cohesion proteins with genes and enhancers.

4.
PLoS Genet ; 11(11): e1005655, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26544867

RESUMO

Individuals with Cornelia de Lange Syndrome (CdLS) display diverse developmental deficits, including slow growth, multiple limb and organ abnormalities, and intellectual disabilities. Severely-affected individuals most often have dominant loss-of-function mutations in the Nipped-B-Like (NIPBL) gene, and milder cases often have missense or in-frame deletion mutations in genes encoding subunits of the cohesin complex. Cohesin mediates sister chromatid cohesion to facilitate accurate chromosome segregation, and NIPBL is required for cohesin to bind to chromosomes. Individuals with CdLS, however, do not display overt cohesion or segregation defects. Rather, studies in human cells and model organisms indicate that modest decreases in NIPBL and cohesin activity alter the transcription of many genes that regulate growth and development. Sister chromatid cohesion factors, including the Nipped-B ortholog of NIPBL, are also critical for gene expression and development in Drosophila melanogaster. Here we describe how a modest reduction in Nipped-B activity alters growth and neurological function in Drosophila. These studies reveal that Nipped-B heterozygous mutant Drosophila show reduced growth, learning, and memory, and altered circadian rhythms. Importantly, the growth deficits are not caused by changes in systemic growth controls, but reductions in cell number and size attributable in part to reduced expression of myc (diminutive) and other growth control genes. The learning, memory and circadian deficits are accompanied by morphological abnormalities in brain structure. These studies confirm that Drosophila Nipped-B mutants provide a useful model for understanding CdLS, and provide new insights into the origins of birth defects.


Assuntos
Proteínas de Ligação a DNA/genética , Síndrome de Cornélia de Lange/genética , Proteínas de Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/fisiologia , Modelos Biológicos , Mutação , Animais , Drosophila/genética , Heterozigoto
5.
PLoS Genet ; 9(6): e1003560, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23818863

RESUMO

Cohesin is crucial for proper chromosome segregation but also regulates gene transcription and organism development by poorly understood mechanisms. Using genome-wide assays in Drosophila developing wings and cultured cells, we find that cohesin functionally interacts with Polycomb group (PcG) silencing proteins at both silenced and active genes. Cohesin unexpectedly facilitates binding of Polycomb Repressive Complex 1 (PRC1) to many active genes, but their binding is mutually antagonistic at silenced genes. PRC1 depletion decreases phosphorylated RNA polymerase II and mRNA at many active genes but increases them at silenced genes. Depletion of cohesin reduces long-range interactions between Polycomb Response Elements in the invected-engrailed gene complex where it represses transcription. These studies reveal a previously unrecognized role for PRC1 in facilitating productive gene transcription and provide new insights into how cohesin and PRC1 control development.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , Drosophila melanogaster/genética , Proteínas do Grupo Polycomb/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Complexo Repressor Polycomb 1/genética , Proteínas do Grupo Polycomb/metabolismo , Ligação Proteica , Transcrição Gênica , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo , Coesinas
6.
Development ; 139(22): 4172-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23034634

RESUMO

Wapl protein regulates binding of the cohesin complex to chromosomes during interphase and helps remove cohesin from chromosomes at mitosis. We isolated a dominant mutation in wapl (wapl(AG)) in a screen for mutations that counteract silencing mediated by an engrailed Polycomb-group response element. wapl(AG) hemizygotes die as pharate adults and have an extra sex combs phenotype characteristic of males with mutations in Polycomb-group (PcG) genes. The wapl gene encodes two proteins, a long form and a short form. wapl(AG) introduces a stop codon at amino acid 271 of the long form and produces a truncated protein. The expression of a transgene encoding the truncated Wapl-AG protein causes an extra-sex-comb phenotype similar to that seen in the wapl(AG) mutant. Mutations in the cohesin-associated genes Nipped-B and pds5 suppress and enhance wapl(AG) phenotypes, respectively. A Pds5-Wapl complex (releasin) removes cohesin from DNA, while Nipped-B loads cohesin. This suggests that Wapl-AG might exert its effects through changes in cohesin binding. Consistent with this model, Wapl-AG was found to increase the stability of cohesin binding to polytene chromosomes. Our data suggest that increasing cohesin stability interferes with PcG silencing at genes that are co-regulated by cohesin and PcG proteins.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Inativação Gênica , Complexo Repressor Polycomb 1/genética , Cromossomos Politênicos/metabolismo , Animais , Proteínas Cromossômicas não Histona/genética , Códon sem Sentido , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Mutação , Fenótipo , Complexo Repressor Polycomb 1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
PLoS Genet ; 8(8): e1002878, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912596

RESUMO

dMi-2 is a highly conserved ATP-dependent chromatin-remodeling factor that regulates transcription and cell fates by altering the structure or positioning of nucleosomes. Here we report an unanticipated role for dMi-2 in the regulation of higher-order chromatin structure in Drosophila. Loss of dMi-2 function causes salivary gland polytene chromosomes to lose their characteristic banding pattern and appear more condensed than normal. Conversely, increased expression of dMi-2 triggers decondensation of polytene chromosomes accompanied by a significant increase in nuclear volume; this effect is relatively rapid and is dependent on the ATPase activity of dMi-2. Live analysis revealed that dMi-2 disrupts interactions between the aligned chromatids of salivary gland polytene chromosomes. dMi-2 and the cohesin complex are enriched at sites of active transcription; fluorescence-recovery after photobleaching (FRAP) assays showed that dMi-2 decreases stable association of cohesin with polytene chromosomes. These findings demonstrate that dMi-2 is an important regulator of both chromosome condensation and cohesin binding in interphase cells.


Assuntos
Adenosina Trifosfatases/genética , Autoantígenos/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Nucleossomos/genética , Cromossomos Politênicos/genética , Adenosina Trifosfatases/metabolismo , Animais , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Interfase/genética , Ligação Proteica , Glândulas Salivares/citologia , Glândulas Salivares/metabolismo , Coesinas
8.
bioRxiv ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37662358

RESUMO

Cis-regulatory elements (CREs) direct gene expression in health and disease, and models that can accurately predict their activities from DNA sequences are crucial for biomedicine. Deep learning represents one emerging strategy to model the regulatory grammar that relates CRE sequence to function. However, these models require training data on a scale that exceeds the number of CREs in the genome. We address this problem using active machine learning to iteratively train models on multiple rounds of synthetic DNA sequences assayed in live mammalian retinas. During each round of training the model actively selects sequence perturbations to assay, thereby efficiently generating informative training data. We iteratively trained a model that predicts the activities of sequences containing binding motifs for the photoreceptor transcription factor Cone-rod homeobox (CRX) using an order of magnitude less training data than current approaches. The model's internal confidence estimates of its predictions are reliable guides for designing sequences with high activity. The model correctly identified critical sequence differences between active and inactive sequences with nearly identical transcription factor binding sites, and revealed order and spacing preferences for combinations of motifs. Our results establish active learning as an effective method to train accurate deep learning models of cis-regulatory function after exhausting naturally occurring training examples in the genome.

9.
Bioessays ; 30(8): 715-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18623068

RESUMO

The cohesin complex is best known for its role in sister chromatid cohesion. Over the past few years, it has become apparent that cohesin also regulates gene expression, but the mechanisms by which it does so are unknown. Recently, three groups mapped numerous cohesin-binding sites in mammalian chromosomes and found substantial overlap with the CCCTC-binding factor (CTCF).1-3 CTCF is an insulator protein that blocks enhancer-promoter interactions, and the investigators found that cohesin also contributes to this activity. Thus, these studies demonstrate at least one mechanism by which cohesin can control gene expression.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Cromossomos/fisiologia , Proteínas de Ligação a DNA/química , Regulação da Expressão Gênica , Proteínas Repressoras/química , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Segregação de Cromossomos , Cromossomos/ultraestrutura , Elementos Facilitadores Genéticos , Feminino , Células HeLa , Humanos , Masculino , Conformação Molecular , Regiões Promotoras Genéticas , Ligação Proteica , Coesinas
10.
Mol Cell Biol ; 26(6): 2347-59, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16508010

RESUMO

The Notch receptor controls development by activating transcription of specific target genes in response to extracellular signals. The factors that control assembly of the Notch activator complex on target genes and its ability to activate transcription are not fully known. Here we show, through genetic and molecular analysis, that the Drosophila Nipped-A protein is required for activity of Notch and its coactivator protein, mastermind, during wing development. Nipped-A and mastermind also colocalize extensively on salivary gland polytene chromosomes, and reducing Nipped-A activity decreases mastermind binding. Nipped-A is the fly homologue of the yeast Tra1 and human TRRAP proteins and is a key component of both the SAGA and Tip60 (NuA4) chromatin-modifying complexes. We find that, like Nipped-A, the Ada2b component of SAGA and the domino subunit of Tip60 are also required for mastermind function during wing development. Based on these results, we propose that Nipped-A, through the action of the SAGA and Tip60 complexes, facilitates assembly of the Notch activator complex and target gene transcription.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Histona Acetiltransferases/metabolismo , Proteínas Nucleares/metabolismo , Receptores Notch/metabolismo , Asas de Animais/crescimento & desenvolvimento , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Embrião não Mamífero , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Histona Acetiltransferases/genética , Masculino , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Mutação , Proteínas Nucleares/genética , Subunidades Proteicas , Receptores Notch/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Veias/crescimento & desenvolvimento
11.
Sci Adv ; 3(8): e1700944, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28782042

RESUMO

This study examines the role of Polycomb repressive complex 1 (PRC1) at active genes. The PRC1 and PRC2 complexes are crucial for epigenetic silencing during development of an organism. They are recruited to Polycomb response elements (PREs) and establish silenced domains over several kilobases. Recent studies show that PRC1 is also directly recruited to active genes by the cohesin complex. Cohesin participates broadly in control of gene transcription, but it is unknown whether cohesin-recruited PRC1 also plays a role in transcriptional control of active genes. We address this question using genome-wide RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq). The results show that PRC1 influences transcription of active genes, and a significant fraction of its effects are likely direct. The roles of different PRC1 subunits can also vary depending on the gene. Depletion of PRC1 subunits by RNA interference alters phosphorylation of RNA polymerase II (Pol II) and occupancy by the Spt5 pausing-elongation factor at most active genes. These effects on Pol II phosphorylation and Spt5 are likely linked to changes in elongation and RNA processing detected by nascent RNA-seq, although the mechanisms remain unresolved. The experiments also reveal that PRC1 facilitates association of Spt5 with enhancers and PREs. Reduced Spt5 levels at these regulatory sequences upon PRC1 depletion coincide with changes in Pol II occupancy and phosphorylation. Our findings indicate that, in addition to its repressive roles in epigenetic gene silencing, PRC1 broadly influences transcription of active genes and may suppress transcription of nonpromoter regulatory sequences.


Assuntos
Regulação da Expressão Gênica , Complexo Repressor Polycomb 1/metabolismo , Transcrição Gênica , Animais , RNA Polimerases Dirigidas por DNA/metabolismo , Elementos Facilitadores Genéticos , Inativação Gênica , Humanos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Fosforilação , Complexo Repressor Polycomb 1/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas , Elementos de Resposta , Ativação Transcricional , Fatores de Elongação da Transcrição/metabolismo
12.
Nat Genet ; 49(11): 1647-1653, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28967912

RESUMO

Histone H3 lysine 4 monomethylation (H3K4me1) is an evolutionarily conserved feature of enhancer chromatin catalyzed by the COMPASS-like methyltransferase family, which includes Trr in Drosophila melanogaster and MLL3 (encoded by KMT2C) and MLL4 (encoded by KMT2D) in mammals. Here we demonstrate that Drosophila embryos expressing catalytically deficient Trr eclose and develop to productive adulthood. Parallel experiments with a trr allele that augments enzyme product specificity show that conversion of H3K4me1 at enhancers to H3K4me2 and H3K4me3 is also compatible with life and results in minimal changes in gene expression. Similarly, loss of the catalytic SET domains of MLL3 and MLL4 in mouse embryonic stem cells (mESCs) does not disrupt self-renewal. Drosophila embryos with trr alleles encoding catalytic mutants manifest subtle developmental abnormalities when subjected to temperature stress or altered cohesin levels. Collectively, our findings suggest that animal development can occur in the context of Trr or mammalian COMPASS-like proteins deficient in H3K4 monomethylation activity and point to a possible role for H3K4me1 on cis-regulatory elements in specific settings to fine-tune transcriptional regulation in response to environmental stress.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Sistemas CRISPR-Cas , Cromatina/química , Cromatina/metabolismo , Proteínas de Drosophila/deficiência , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Metilação , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Células Sf9 , Spodoptera
13.
Genetics ; 160(4): 1549-60, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11973309

RESUMO

The best-characterized insulator in Drosophila melanogaster is the Su(Hw)-binding region contained within the gypsy retrotransposon. In the y(2) mutant, Su(Hw) protein partially inhibits yellow transcription by blocking the function of transcriptional enhancers located distally from the yellow promoter with respect to gypsy. Previously we have shown that yellow enhancers can overcome inhibition by a downstream insulator in the y(rh1) allele, when a second gypsy element is located upstream of the enhancers. To understand how two insulators neutralize each other, we isolated various deletions that terminate in the regulatory region of the y(rh1) allele. To generate these alleles we used DNA elongation by gene conversion of the truncated chromosomes at the end of the yellow regulatory region. We found that gypsy insulator can function at the end of the truncated chromosome. Addition of the gypsy insulator upstream of the yellow enhancers overcomes the enhancer-blocking activity of the gypsy insulator inserted between the yellow enhancers and promoter. These results suggest that the gypsy insulators do not form separate transcriptional domains that delimit the interactions between enhancers and promoters.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Proteínas de Insetos/genética , Regiões Promotoras Genéticas , Retroelementos , Animais , Sequência de Bases , Cruzamentos Genéticos , Feminino , Masculino , Dados de Sequência Molecular , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de DNA , Transcrição Gênica
14.
G3 (Bethesda) ; 3(10): 1785-94, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23979932

RESUMO

The cohesin protein complex functionally interacts with Polycomb group (PcG) silencing proteins to control expression of several key developmental genes, such as the Drosophila Enhancer of split gene complex [E(spl)-C]. The E(spl)-C contains 12 genes that inhibit neural development. In a cell line derived from the central nervous system, cohesin and the PRC1 PcG protein complex bind and repress E (spl)-C transcription, but the repression mechanisms are unknown. The genes in the E(spl)-C are directly activated by the Notch receptor. Here we show that depletion of cohesin or PRC1 increases binding of the Notch intracellular fragment to genes in the E(spl)-C, correlating with increased transcription. The increased transcription likely reflects both direct effects of cohesin and PRC1 on RNA polymerase activity at the E(spl)-C, and increased expression of Notch ligands. By chromosome conformation capture we find that the E(spl)-C is organized into a self-interactive architectural domain that is co-extensive with the region that binds cohesin and PcG complexes. The self-interactive architecture is formed independently of cohesin or PcG proteins. We posit that the E(spl)-C architecture dictates where cohesin and PcG complexes bind and act when they are recruited by as yet unidentified factors, thereby controlling the E(spl)-C as a coordinated domain.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Proteínas do Grupo Polycomb/metabolismo , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Animais , Linhagem Celular , Montagem e Desmontagem da Cromatina , Cromossomos de Insetos/metabolismo , Drosophila/metabolismo , Ligação Proteica , Ativação Transcricional
15.
Curr Biol ; 21(19): 1624-34, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21962715

RESUMO

BACKGROUND: The cohesin complex mediates sister chromatid cohesion and regulates gene transcription. Prior studies show that cohesin preferentially binds and regulates genes that control growth and differentiation and that even mild disruption of cohesin function alters development. Here we investigate how cohesin specifically recognizes and regulates genes that control development in Drosophila. RESULTS: Genome-wide analyses show that cohesin selectively binds genes in which RNA polymerase II (Pol II) pauses just downstream of the transcription start site. These genes often have GAGA factor (GAF) binding sites 100 base pairs (bp) upstream of the start site, and GT dinucleotide repeats 50 to 800 bp downstream in the plus strand. They have low levels of histone H3 lysine 36 trimethylation (H3K36me3) associated with transcriptional elongation, even when highly transcribed. Cohesin depletion does not reduce polymerase pausing, in contrast to depletion of the NELF (negative elongation factor) pausing complex. Cohesin, NELF, and Spt5 pausing and elongation factor knockdown experiments indicate that cohesin does not inhibit binding of polymerase to promoters or physically block transcriptional elongation, but at genes that it strongly represses, it hinders transition of paused polymerase to elongation at a step distinct from those controlled by Spt5 and NELF. CONCLUSIONS: Our findings argue that cohesin and pausing factors are recruited independently to the same genes, perhaps by GAF and the GT repeats, and that their combined action determines the level of actively elongating RNA polymerase.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , RNA Polimerase II/metabolismo , Animais , Sítios de Ligação , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/metabolismo , Técnicas de Silenciamento de Genes , Histonas/genética , Histonas/metabolismo , Metilação , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/metabolismo , Coesinas
16.
Mol Cell Biol ; 30(20): 4940-51, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20696838

RESUMO

The cohesin protein complex holds sister chromatids together to ensure proper chromosome segregation upon cell division and also regulates gene transcription. Partial loss of the Nipped-B protein that loads cohesin onto chromosomes, or the Pds5 protein required for sister chromatid cohesion, alters gene expression and organism development, without affecting chromosome segregation. Knowing if a reduced Nipped-B or Pds5 dosage changes how much cohesin binds chromosomes, or the stability with which it binds, is critical information for understanding how cohesin regulates transcription. We addressed this question by in vivo fluorescence recovery after photobleaching (FRAP) with Drosophila salivary glands. Cohesin, Nipped-B, and Pds5 all bind chromosomes in both weak and stable modes, with residence half-lives of some 20 seconds and 6 min, respectively. Reducing the Nipped-B dosage decreases the amount of stable cohesin without affecting its chromosomal residence time, and reducing the Pds5 dosage increases the amount of stable cohesin. This argues that Nipped-B and Pds5 regulate transcription by controlling how much cohesin binds DNA in the stable mode, and not binding affinity. We also found that Nipped-B, Pds5, and the Wapl protein that interacts with Pds5 all play unique roles in cohesin chromosome binding.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Animais , Ciclo Celular , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , Cromossomos/genética , Cromossomos/metabolismo , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Recuperação de Fluorescência Após Fotodegradação , Dosagem de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Glândulas Salivares/metabolismo , Ativação Transcricional , Coesinas
17.
PLoS One ; 4(7): e6202, 2009 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-19587787

RESUMO

The cohesin protein complex was first recognized for holding sister chromatids together and ensuring proper chromosome segregation. Cohesin also regulates gene expression, but the mechanisms are unknown. Cohesin associates preferentially with active genes, and is generally absent from regions in which histone H3 is methylated by the Enhancer of zeste [E(z)] Polycomb group silencing protein. Here we show that transcription is hypersensitive to cohesin levels in two exceptional cases where cohesin and the E(z)-mediated histone methylation simultaneously coat the entire Enhancer of split and invected-engrailed gene complexes in cells derived from Drosophila central nervous system. These gene complexes are modestly transcribed, and produce seven of the twelve transcripts that increase the most with cohesin knockdown genome-wide. Cohesin mutations alter eye development in the same manner as increased Enhancer of split activity, suggesting that similar regulation occurs in vivo. We propose that cohesin helps restrain transcription of these gene complexes, and that deregulation of similarly cohesin-hypersensitive genes may underlie developmental deficits in Cornelia de Lange syndrome.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Ciclo Celular/fisiologia , Cromátides/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Proteínas de Drosophila/genética , Drosophila/genética , Regulação da Expressão Gênica/fisiologia , Proteínas de Homeodomínio/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , Técnicas de Silenciamento de Genes , Mutação , Fenótipo , Interferência de RNA , Coesinas
18.
Chromosoma ; 117(1): 51-66, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17909832

RESUMO

Drosophila Nipped-B is an essential protein that has multiple functions. It facilitates expression of homeobox genes and is also required for sister chromatid cohesion. Nipped-B is conserved from yeast to man, and its orthologs also play roles in deoxyribonucleic acid repair and meiosis. Mutation of the human ortholog, Nipped-B-Like (NIPBL), causes Cornelia de Lange syndrome (CdLS), associated with multiple developmental defects. The Nipped-B protein family is required for the cohesin complex that mediates sister chromatid cohesion to bind to chromosomes. A key question, therefore, is whether the Nipped-B family regulates gene expression, meiosis, and development by controlling cohesin. To gain insights into Nipped-B's functions, we compared the effects of several Nipped-B mutations on gene expression, sister chromatid cohesion, and meiosis. We also examined association of Nipped-B and cohesin with somatic and meiotic chromosomes by immunostaining. Missense Nipped-B alleles affecting the same HEAT repeat motifs as CdLS-causing NIPBL mutations have intermediate effects on both gene expression and mitotic chromatid cohesion, linking these two functions and the role of NIPBL in human development. Nipped-B colocalizes extensively with cohesin on chromosomes in both somatic and meiotic cells and is present in soluble complexes with cohesin subunits in nuclear extracts. In meiosis, Nipped-B also colocalizes with the synaptonemal complex and contributes to maintenance of meiotic chromosome cores. These results support the idea that direct regulation of cohesin function underlies the diverse functions of Nipped-B and its orthologs.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Meiose/fisiologia , Mutação/genética , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cromátides/genética , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Síndrome de Cornélia de Lange , Proteínas de Drosophila/imunologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Feminino , Cobaias , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imunoprecipitação , Larva , Masculino , Mitose/genética , Dados de Sequência Molecular , Proteínas Nucleares/genética , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coelhos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Troca de Cromátide Irmã , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Coesinas
19.
Chromosoma ; 117(1): 89-102, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17965872

RESUMO

The cohesin complex is a chromosomal component required for sister chromatid cohesion that is conserved from yeast to man. The similarly conserved Nipped-B protein is needed for cohesin to bind to chromosomes. In higher organisms, Nipped-B and cohesin regulate gene expression and development by unknown mechanisms. Using chromatin immunoprecipitation, we find that Nipped-B and cohesin bind to the same sites throughout the entire non-repetitive Drosophila genome. They preferentially bind transcribed regions and overlap with RNA polymerase II. This contrasts sharply with yeast, where cohesin binds almost exclusively between genes. Differences in cohesin and Nipped-B binding between Drosophila cell lines often correlate with differences in gene expression. For example, cohesin and Nipped-B bind the Abd-B homeobox gene in cells in which it is transcribed, but not in cells in which it is silenced. They bind to the Abd-B transcription unit and downstream regulatory region and thus could regulate both transcriptional elongation and activation. We posit that transcription facilitates cohesin binding, perhaps by unfolding chromatin, and that Nipped-B then regulates gene expression by controlling cohesin dynamics. These mechanisms are likely involved in the etiology of Cornelia de Lange syndrome, in which mutation of one copy of the NIPBL gene encoding the human Nipped-B ortholog causes diverse structural and mental birth defects.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Genoma de Inseto , Meiose/fisiologia , Proteínas Nucleares/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Células Cultivadas , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Polimerase II/metabolismo , Coesinas
20.
Proc Natl Acad Sci U S A ; 103(32): 11970-4, 2006 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-16882721

RESUMO

The Rtf1 subunit of the Paf1 complex is required for proper monoubiquitination of histone H2B and methylation of histone H3 on lysines 4 (H3K4) and 79 in yeast Saccharomyces cerevisiae. Using RNAi, we examined the role of Rtf1 in histone methylation and gene expression in Drosophila melanogaster. We show that Drosophila Rtf1 (dRtf1) is required for proper gene expression and development. Furthermore, we show that RNAi-mediated reduction of dRtf1 results in a reduction in histone H3K4 trimethylation levels on bulk histones and chromosomes in vivo, indicating that the histone modification pathway via Rtf1 is conserved among yeast, Drosophila, and human. Recently, it was demonstrated that histone H3K4 methylation mediated via the E3 ligase Bre1 is critical for transcription of Notch target genes in Drosophila. Here we demonstrate that the dRtf1 component of the Paf1 complex functions in Notch signaling.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Regulação da Expressão Gênica , Histonas/química , Metilação , Receptores Notch/metabolismo , Sequência de Aminoácidos , Animais , Drosophila melanogaster , Feminino , Masculino , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA