Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
PLoS Comput Biol ; 19(5): e1011135, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37216399

RESUMO

Variability is an intrinsic property of biological systems and is often at the heart of their complex behaviour. Examples range from cell-to-cell variability in cell signalling pathways to variability in the response to treatment across patients. A popular approach to model and understand this variability is nonlinear mixed effects (NLME) modelling. However, estimating the parameters of NLME models from measurements quickly becomes computationally expensive as the number of measured individuals grows, making NLME inference intractable for datasets with thousands of measured individuals. This shortcoming is particularly limiting for snapshot datasets, common e.g. in cell biology, where high-throughput measurement techniques provide large numbers of single cell measurements. We introduce a novel approach for the estimation of NLME model parameters from snapshot measurements, which we call filter inference. Filter inference uses measurements of simulated individuals to define an approximate likelihood for the model parameters, avoiding the computational limitations of traditional NLME inference approaches and making efficient inferences from snapshot measurements possible. Filter inference also scales well with the number of model parameters, using state-of-the-art gradient-based MCMC algorithms such as the No-U-Turn Sampler (NUTS). We demonstrate the properties of filter inference using examples from early cancer growth modelling and from epidermal growth factor signalling pathway modelling.


Assuntos
Algoritmos , Dinâmica não Linear , Humanos , Fatores de Tempo , Probabilidade
2.
J Theor Biol ; 558: 111351, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36379231

RESUMO

Whether an outbreak of infectious disease is likely to grow or dissipate is determined through the time-varying reproduction number, Rt. Real-time or retrospective identification of changes in Rt following the imposition or relaxation of interventions can thus contribute important evidence about disease transmission dynamics which can inform policymaking. Here, we present a method for estimating shifts in Rt within a renewal model framework. Our method, which we call EpiCluster, is a Bayesian nonparametric model based on the Pitman-Yor process. We assume that Rt is piecewise-constant, and the incidence data and priors determine when or whether Rt should change and how many times it should do so throughout the series. We also introduce a prior which induces sparsity over the number of changepoints. Being Bayesian, our approach yields a measure of uncertainty in Rt and its changepoints. EpiCluster is fast, straightforward to use, and we demonstrate that it provides automated detection of rapid changes in transmission, either in real-time or retrospectively, for synthetic data series where the Rt profile is known. We illustrate the practical utility of our method by fitting it to case data of outbreaks of COVID-19 in Australia and Hong Kong, where it finds changepoints coinciding with the imposition of non-pharmaceutical interventions. Bayesian nonparametric methods, such as ours, allow the volume and complexity of the data to dictate the number of parameters required to approximate the process and should find wide application in epidemiology. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".


Assuntos
COVID-19 , Humanos , Teorema de Bayes , Estudos Retrospectivos , COVID-19/epidemiologia , Pandemias , Surtos de Doenças
3.
Bull Math Biol ; 84(3): 39, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132487

RESUMO

There is an inherent tension in Quantitative Systems Pharmacology (QSP) between the need to incorporate mathematical descriptions of complex physiology and drug targets with the necessity of developing robust, predictive and well-constrained models. In addition to this, there is no "gold standard" for model development and assessment in QSP. Moreover, there can be confusion over terminology such as model and parameter identifiability; complex and simple models; virtual populations; and other concepts, which leads to potential miscommunication and misapplication of methodologies within modeling communities, both the QSP community and related disciplines. This perspective article highlights the pros and cons of using simple (often identifiable) vs. complex (more physiologically detailed but often non-identifiable) models, as well as aspects of parameter identifiability, sensitivity and inference methodologies for model development and analysis. The paper distills the central themes of the issue of identifiability and optimal model size and discusses open challenges.


Assuntos
Modelos Biológicos , Farmacologia em Rede , Conceitos Matemáticos
4.
J Stroke Cerebrovasc Dis ; 31(2): 106229, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34871903

RESUMO

OBJECTIVES: Underpowered trials risk inaccurate results. Recruitment to stroke rehabilitation randomised controlled trials (RCTs) is often a challenge. Statistical simulations offer an important opportunity to explore the adequacy of sample sizes in the context of specific outcome measures. We aimed to examine and compare the adequacy of stroke rehabilitation RCT sample sizes using the Barthel Index (BI) or modified Rankin Scale (mRS) as primary outcomes. METHODS: We conducted computer simulations using typical experimental event rates (EER) and control event rates (CER) based on individual participant data (IPD) from stroke rehabilitation RCTs. Event rates are the proportion of participants who experienced clinically relevant improvements in the RCT experimental and control groups. We examined minimum sample size requirements and estimated the number of participants required to achieve a number needed to treat within clinically acceptable boundaries for the BI and mRS. RESULTS: We secured 2350 IPD (18 RCTs). For a 90% chance of statistical accuracy on the BI a rehabilitation RCT would require 273 participants per randomised group. Accurate interpretation of effect sizes would require 1000s of participants per group. Simulations for the mRS were not possible as a clinically relevant improvement was not detected when using this outcome measure. CONCLUSIONS: Stroke rehabilitation RCTs with large sample sizes are required for accurate interpretation of effect sizes based on the BI. The mRS lacked sensitivity to detect change and thus may be unsuitable as a primary outcome in stroke rehabilitation trials.


Assuntos
Ensaios Clínicos Controlados Aleatórios como Assunto , Reabilitação do Acidente Vascular Cerebral , Humanos , Avaliação de Resultados em Cuidados de Saúde , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Projetos de Pesquisa , Tamanho da Amostra , Índice de Gravidade de Doença
5.
Anal Chem ; 93(4): 2062-2071, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33417431

RESUMO

Alternating current (AC) voltammetric techniques are experimentally powerful as they enable Faradaic current to be isolated from non-Faradaic contributions. Finding the best global fit between experimental voltammetric data and simulations based on reaction models requires searching a substantial parameter space at high resolution. In this paper, we estimate parameters from purely sinusoidal voltammetry (PSV) experiments, investigating the redox reactions of a surface-confined ferrocene derivative. The advantage of PSV is that a complete experiment can be simulated relatively rapidly, compared to other AC voltammetric techniques. In one example involving thermodynamic dispersion, a PSV parameter inference effort requiring 7,500,000 simulations was completed in 7 h, whereas the same process for our previously used technique, ramped Fourier transform AC voltammetry (ramped FTACV), would have taken 4 days. Using both synthetic and experimental data with a surface confined diazonium substituted ferrocene derivative, it is shown that the PSV technique can be used to recover the key chemical and physical parameters. By applying techniques from Bayesian inference and Markov chain Monte Carlo methods, the confidence, distribution, and degree of correlation of the recovered parameters was visualized and quantified.

6.
J Theor Biol ; 511: 110541, 2021 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-33271182

RESUMO

Variation is characteristic of all living systems. Laboratory techniques such as flow cytometry can probe individual cells, and, after decades of experimentation, it is clear that even members of genetically identical cell populations can exhibit differences. To understand whether variation is biologically meaningful, it is essential to discern its source. Mathematical models of biological systems are tools that can be used to investigate causes of cell-to-cell variation. From mathematical analysis and simulation of these models, biological hypotheses can be posed and investigated, then parameter inference can determine which of these is compatible with experimental data. Data from laboratory experiments often consist of "snapshots" representing distributions of cellular properties at different points in time, rather than individual cell trajectories. These data are not straightforward to fit using hierarchical Bayesian methods, which require the number of cell population clusters to be chosen a priori. Nor are they amenable to standard nonlinear mixed effect methods, since a single observation per cell is typically too few to estimate parameter variability. Here, we introduce a computational sampling method named "Contour Monte Carlo" (CMC) for estimating mathematical model parameters from snapshot distributions, which is straightforward to implement and does not require that cells be assigned to predefined categories. The CMC algorithm fits to snapshot probability distributions rather than raw data, which means its computational burden does not, like existing approaches, increase with the number of cells observed. Our method is appropriate for underdetermined systems, where there are fewer distinct types of observations than parameters to be determined, and where observed variation is mostly due to variability in cellular processes rather than experimental measurement error. This may be the case for many systems due to continued improvements in resolution of laboratory techniques. In this paper, we apply our method to quantify cellular variation for three biological systems of interest and provide Julia code enabling others to use this method.


Assuntos
Algoritmos , Modelos Biológicos , Teorema de Bayes , Simulação por Computador , Método de Monte Carlo
7.
Philos Trans A Math Phys Eng Sci ; 378(2173): 20190348, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32448060

RESUMO

Mathematical models of ion channels, which constitute indispensable components of action potential models, are commonly constructed by fitting to whole-cell patch-clamp data. In a previous study, we fitted cell-specific models to hERG1a (Kv11.1) recordings simultaneously measured using an automated high-throughput system, and studied cell-cell variability by inspecting the resulting model parameters. However, the origin of the observed variability was not identified. Here, we study the source of variability by constructing a model that describes not just ion current dynamics, but the entire voltage-clamp experiment. The experimental artefact components of the model include: series resistance, membrane and pipette capacitance, voltage offsets, imperfect compensations made by the amplifier for these phenomena, and leak current. In this model, variability in the observations can be explained by either cell properties, measurement artefacts, or both. Remarkably, by assuming that variability arises exclusively from measurement artefacts, it is possible to explain a larger amount of the observed variability than when assuming cell-specific ion current kinetics. This assumption also leads to a smaller number of model parameters. This result suggests that most of the observed variability in patch-clamp data measured under the same conditions is caused by experimental artefacts, and hence can be compensated for in post-processing by using our model for the patch-clamp experiment. This study has implications for the question of the extent to which cell-cell variability in ion channel kinetics exists, and opens up routes for better correction of artefacts in patch-clamp data. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.

8.
Biophys J ; 117(12): 2420-2437, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31493859

RESUMO

Mathematical models of ionic currents are used to study the electrophysiology of the heart, brain, gut, and several other organs. Increasingly, these models are being used predictively in the clinic, for example, to predict the risks and results of genetic mutations, pharmacological treatments, or surgical procedures. These safety-critical applications depend on accurate characterization of the underlying ionic currents. Four different methods can be found in the literature to fit voltage-sensitive ion channel models to whole-cell current measurements: method 1, fitting model equations directly to time-constant, steady-state, and I-V summary curves; method 2, fitting by comparing simulated versions of these summary curves to their experimental counterparts; method 3, fitting to the current traces themselves from a range of protocols; and method 4, fitting to a single current trace from a short and rapidly fluctuating voltage-clamp protocol. We compare these methods using a set of experiments in which hERG1a current was measured in nine Chinese hamster ovary cells. In each cell, the same sequence of fitting protocols was applied, as well as an independent validation protocol. We show that methods 3 and 4 provide the best predictions on the independent validation set and that short, rapidly fluctuating protocols like that used in method 4 can replace much longer conventional protocols without loss of predictive ability. Although data for method 2 are most readily available from the literature, we find it performs poorly compared to methods 3 and 4 both in accuracy of predictions and computational efficiency. Our results demonstrate how novel experimental and computational approaches can improve the quality of model predictions in safety-critical applications.


Assuntos
Fenômenos Eletrofisiológicos , Canais Iônicos/metabolismo , Modelos Biológicos , Algoritmos , Humanos , Software
9.
Biophys J ; 117(12): 2438-2454, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31447109

RESUMO

Predicting how pharmaceuticals may affect heart rhythm is a crucial step in drug development and requires a deep understanding of a compound's action on ion channels. In vitro hERG channel current recordings are an important step in evaluating the proarrhythmic potential of small molecules and are now routinely performed using automated high-throughput patch-clamp platforms. These machines can execute traditional voltage-clamp protocols aimed at specific gating processes, but the array of protocols needed to fully characterize a current is typically too long to be applied in a single cell. Shorter high-information protocols have recently been introduced that have this capability, but they are not typically compatible with high-throughput platforms. We present a new 15 second protocol to characterize hERG (Kv11.1) kinetics, suitable for both manual and high-throughput systems. We demonstrate its use on the Nanion SyncroPatch 384PE, a 384-well automated patch-clamp platform, by applying it to Chinese hamster ovary cells stably expressing hERG1a. From these recordings, we construct 124 cell-specific variants/parameterizations of a hERG model at 25°C. A further eight independent protocols are run in each cell and are used to validate the model predictions. We then combine the experimental recordings using a hierarchical Bayesian model, which we use to quantify the uncertainty in the model parameters, and their variability from cell-to-cell; we use this model to suggest reasons for the variability. This study demonstrates a robust method to measure and quantify uncertainty and shows that it is possible and practical to use high-throughput systems to capture full hERG channel kinetics quantitatively and rapidly.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Animais , Automação , Teorema de Bayes , Células CHO , Cricetulus , Humanos , Cinética , Análise de Célula Única
10.
Biophys J ; 117(12): 2455-2470, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31451180

RESUMO

Ion channel behavior can depend strongly on temperature, with faster kinetics at physiological temperatures leading to considerable changes in currents relative to room temperature. These temperature-dependent changes in voltage-dependent ion channel kinetics (rates of opening, closing, inactivating, and recovery) are commonly represented with Q10 coefficients or an Eyring relationship. In this article, we assess the validity of these representations by characterizing channel kinetics at multiple temperatures. We focus on the human Ether-à-go-go-Related Gene (hERG) channel, which is important in drug safety assessment and commonly screened at room temperature so that results require extrapolation to physiological temperature. In Part I of this study, we established a reliable method for high-throughput characterization of hERG1a (Kv11.1) kinetics, using a 15-second information-rich optimized protocol. In this Part II, we use this protocol to study the temperature dependence of hERG kinetics using Chinese hamster ovary cells overexpressing hERG1a on the Nanion SyncroPatch 384PE, a 384-well automated patch-clamp platform, with temperature control. We characterize the temperature dependence of hERG gating by fitting the parameters of a mathematical model of hERG kinetics to data obtained at five distinct temperatures between 25 and 37°C and validate the models using different protocols. Our models reveal that activation is far more temperature sensitive than inactivation, and we observe that the temperature dependency of the kinetic parameters is not represented well by Q10 coefficients; it broadly follows a generalized, but not the standardly-used, Eyring relationship. We also demonstrate that experimental estimations of Q10 coefficients are protocol dependent. Our results show that a direct fit using our 15-s protocol best represents hERG kinetics at any given temperature and suggests that using the Generalized Eyring theory is preferable if no experimental data are available to derive model parameters at a given temperature.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Modelos Biológicos , Temperatura , Animais , Células CHO , Cricetulus , Humanos , Cinética
11.
Anal Chem ; 91(3): 1944-1953, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30565912

RESUMO

Recently, we introduced the use of techniques drawn from Bayesian statistics to recover kinetic and thermodynamic parameters from voltammetric data and were able to show that the technique of large amplitude ac voltammetry yielded significantly more accurate parameter values than the equivalent dc approach. In this paper, we build on this work to show that this approach allows us, for the first time, to separate the effects of random experimental noise and inherent system variability in voltammetric experiments. We analyze ten repeated experimental data sets for the [Fe(CN)6]3-/4- process, again using large-amplitude ac cyclic voltammetry. In each of the ten cases, we obtain an extremely good fit to the experimental data and obtain very narrow distributions of the recovered parameters governing both the faradaic (the reversible formal potential, E0, the standard heterogeneous charge transfer rate constant, k0, and the charge transfer coefficient, α) and nonfaradaic terms (uncompensated resistance, Ru, and double layer capacitance, Cdl). We then employ hierarchical Bayesian methods to recover the underlying "hyperdistribution" of the faradaic and nonfaradaic parameters, showing that in general the variation between the experimental data sets is significantly greater than suggested by individual experiments, except for α where the interexperiment variation was relatively minor. Correlations between pairs of parameters are provided, and for example, reveal a weak link between k0 and Cdl (surface activity of a glassy carbon electrode surface). Finally, we discuss the implications of our findings for voltammetric experiments more generally.

12.
Bull Math Biol ; 81(1): 7-38, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30291590

RESUMO

Distinct electrophysiological phenotypes are exhibited by biological cells that have differentiated into particular cell types. The usual approach when simulating the cardiac electrophysiology of tissue that includes different cell types is to model the different cell types as occupying spatially distinct yet coupled regions. Instead, we model the electrophysiology of well-mixed cells by using homogenisation to derive an extension to the commonly used monodomain or bidomain equations. These new equations permit spatial variations in the distribution of the different subtypes of cells and will reduce the computational demands of solving the governing equations. We validate the homogenisation computationally, and then use the new model to explain some experimental observations from stem cell-derived cardiomyocyte monolayers.


Assuntos
Modelos Cardiovasculares , Miócitos Cardíacos/fisiologia , Potenciais de Ação/fisiologia , Simulação por Computador , Diástole/fisiologia , Fenômenos Eletrofisiológicos , Sistema de Condução Cardíaco/citologia , Sistema de Condução Cardíaco/fisiologia , Humanos , Conceitos Matemáticos , Miócitos Cardíacos/classificação , Fenótipo , Células-Tronco/classificação , Células-Tronco/fisiologia
13.
J Physiol ; 596(10): 1813-1828, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29573276

RESUMO

KEY POINTS: Ion current kinetics are commonly represented by current-voltage relationships, time constant-voltage relationships and subsequently mathematical models fitted to these. These experiments take substantial time, which means they are rarely performed in the same cell. Rather than traditional square-wave voltage clamps, we fitted a model to the current evoked by a novel sum-of-sinusoids voltage clamp that was only 8 s long. Short protocols that can be performed multiple times within a single cell will offer many new opportunities to measure how ion current kinetics are affected by changing conditions. The new model predicts the current under traditional square-wave protocols well, with better predictions of underlying currents than literature models. The current under a novel physiologically relevant series of action potential clamps is predicted extremely well. The short sinusoidal protocols allow a model to be fully fitted to individual cells, allowing us to examine cell-cell variability in current kinetics for the first time. ABSTRACT: Understanding the roles of ion currents is crucial to predict the action of pharmaceuticals and mutations in different scenarios, and thereby to guide clinical interventions in the heart, brain and other electrophysiological systems. Our ability to predict how ion currents contribute to cellular electrophysiology is in turn critically dependent on our characterisation of ion channel kinetics - the voltage-dependent rates of transition between open, closed and inactivated channel states. We present a new method for rapidly exploring and characterising ion channel kinetics, applying it to the hERG potassium channel as an example, with the aim of generating a quantitatively predictive representation of the ion current. We fitted a mathematical model to currents evoked by a novel 8 second sinusoidal voltage clamp in CHO cells overexpressing hERG1a. The model was then used to predict over 5 minutes of recordings in the same cell in response to further protocols: a series of traditional square step voltage clamps, and also a novel voltage clamp comprising a collection of physiologically relevant action potentials. We demonstrate that we can make predictive cell-specific models that outperform the use of averaged data from a number of different cells, and thereby examine which changes in gating are responsible for cell-cell variability in current kinetics. Our technique allows rapid collection of consistent and high quality data, from single cells, and produces more predictive mathematical ion channel models than traditional approaches.


Assuntos
Potenciais de Ação , Capilares/fisiologia , Canais de Potássio Éter-A-Go-Go/fisiologia , Ativação do Canal Iônico , Modelos Teóricos , Animais , Células CHO , Cricetinae , Cricetulus , Cinética , Técnicas de Patch-Clamp
14.
Development ; 142(22): 3902-11, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26428008

RESUMO

The Caenorhabditis elegans germ line is an outstanding model system in which to study the control of cell division and differentiation. Although many of the molecules that regulate germ cell proliferation and fate decisions have been identified, how these signals interact with cellular dynamics and physical forces within the gonad remains poorly understood. We therefore developed a dynamic, 3D in silico model of the C. elegans germ line, incorporating both the mechanical interactions between cells and the decision-making processes within cells. Our model successfully reproduces key features of the germ line during development and adulthood, including a reasonable ovulation rate, correct sperm count, and appropriate organization of the germ line into stably maintained zones. The model highlights a previously overlooked way in which germ cell pressure may influence gonadogenesis, and also predicts that adult germ cells might be subject to mechanical feedback on the cell cycle akin to contact inhibition. We provide experimental data consistent with the latter hypothesis. Finally, we present cell trajectories and ancestry recorded over the course of a simulation. The novel approaches and software described here link mechanics and cellular decision-making, and are applicable to modeling other developmental and stem cell systems.


Assuntos
Caenorhabditis elegans/genética , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Retroalimentação Fisiológica/fisiologia , Células Germinativas/citologia , Modelos Biológicos , Software , Animais , Fenômenos Biomecânicos , Simulação por Computador , Células Germinativas/fisiologia
15.
PLoS Comput Biol ; 13(2): e1005387, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28192427

RESUMO

The coordinated behaviour of populations of cells plays a central role in tissue growth and renewal. Cells react to their microenvironment by modulating processes such as movement, growth and proliferation, and signalling. Alongside experimental studies, computational models offer a useful means by which to investigate these processes. To this end a variety of cell-based modelling approaches have been developed, ranging from lattice-based cellular automata to lattice-free models that treat cells as point-like particles or extended shapes. However, it remains unclear how these approaches compare when applied to the same biological problem, and what differences in behaviour are due to different model assumptions and abstractions. Here, we exploit the availability of an implementation of five popular cell-based modelling approaches within a consistent computational framework, Chaste (http://www.cs.ox.ac.uk/chaste). This framework allows one to easily change constitutive assumptions within these models. In each case we provide full details of all technical aspects of our model implementations. We compare model implementations using four case studies, chosen to reflect the key cellular processes of proliferation, adhesion, and short- and long-range signalling. These case studies demonstrate the applicability of each model and provide a guide for model usage.


Assuntos
Algoritmos , Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Proliferação de Células/fisiologia , Modelos Biológicos , Esferoides Celulares/fisiologia , Animais , Movimento Celular/fisiologia , Simulação por Computador , Humanos
16.
PLoS Comput Biol ; 13(2): e1005400, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28245235

RESUMO

The Notch pathway plays a vital role in determining whether cells in the intestinal epithelium adopt a secretory or an absorptive phenotype. Cell fate specification is coordinated via Notch's interaction with the canonical Wnt pathway. Here, we propose a new mathematical model of the Notch and Wnt pathways, in which the Hes1 promoter acts as a hub for pathway crosstalk. Computational simulations of the model can assist in understanding how healthy intestinal tissue is maintained, and predict the likely consequences of biochemical knockouts upon cell fate selection processes. Chemical reaction network theory (CRNT) is a powerful, generalised framework which assesses the capacity of our model for monostability or multistability, by analysing properties of the underlying network structure without recourse to specific parameter values or functional forms for reaction rates. CRNT highlights the role of ß-catenin in stabilising the Notch pathway and damping oscillations, demonstrating that Wnt-mediated actions on the Hes1 promoter can induce dynamic transitions in the Notch system, from multistability to monostability. Time-dependent model simulations of cell pairs reveal the stabilising influence of Wnt upon the Notch pathway, in which ß-catenin- and Dsh-mediated action on the Hes1 promoter are key in shaping the subcellular dynamics. Where Notch-mediated transcription of Hes1 dominates, there is Notch oscillation and maintenance of fate flexibility; Wnt-mediated transcription of Hes1 favours bistability akin to cell fate selection. Cells could therefore regulate the proportion of Wnt- and Notch-mediated control of the Hes1 promoter to coordinate the timing of cell fate selection as they migrate through the intestinal epithelium and are subject to reduced Wnt stimuli. Furthermore, mutant cells characterised by hyperstimulation of the Wnt pathway may, through coupling with Notch, invert cell fate in neighbouring healthy cells, enabling an aberrant cell to maintain its neighbours in mitotically active states.


Assuntos
Mucosa Intestinal/metabolismo , Modelos Biológicos , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição HES-1/metabolismo , Via de Sinalização Wnt/fisiologia , Relógios Biológicos/fisiologia , Células Cultivadas , Simulação por Computador , Humanos , Receptor Cross-Talk/fisiologia
17.
J Am Chem Soc ; 139(31): 10677-10686, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28697596

RESUMO

The redox chemistry of the electron entry/exit site in Escherichia coli hydrogenase-1 is shown to play a vital role in tuning biocatalysis. Inspired by nature, we generate a HyaA-R193L variant to disrupt a proposed Arg-His cation-π interaction in the secondary coordination sphere of the outermost, "distal", iron-sulfur cluster. This rewires the enzyme, enhancing the relative rate of H2 production and the thermodynamic efficiency of H2 oxidation catalysis. On the basis of Fourier transformed alternating current voltammetry measurements, we relate these changes in catalysis to a shift in the distal [Fe4S4]2+/1+ redox potential, a previously experimentally inaccessible parameter. Thus, metalloenzyme chemistry is shown to be tuned by the second coordination sphere of an electron transfer site distant from the catalytic center.


Assuntos
Aminoácidos/química , Hidrogenase/química , Catálise , Elétrons , Hidrogênio/química , Oxirredução
18.
Anal Chem ; 89(3): 1565-1573, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28029041

RESUMO

Rapid disulfide bond formation and cleavage is an essential mechanism of life. Using large amplitude Fourier transformed alternating current voltammetry (FTacV) we have measured previously uncharacterized disulfide bond redox chemistry in Escherichia coli HypD. This protein is representative of a class of assembly proteins that play an essential role in the biosynthesis of the active site of [NiFe]-hydrogenases, a family of H2-activating enzymes. Compared to conventional electrochemical methods, the advantages of the FTacV technique are the high resolution of the faradaic signal in the higher order harmonics and the fact that a single electrochemical experiment contains all the data needed to estimate the (very fast) electron transfer rates (both rate constants ≥ 4000 s-1) and quantify the energetics of the cysteine disulfide redox-reaction (reversible potentials for both processes approximately -0.21 ± 0.01 V vs SHE at pH 6). Previously, deriving such data depended on an inefficient manual trial-and-error approach to simulation. As a highly advantageous alternative, we describe herein an automated multiparameter data optimization analysis strategy where the simulated and experimental faradaic current data are compared for both the real and imaginary components in each of the 4th to 12th harmonics after quantifying the charging current data using the time-domain response.

19.
J Mol Cell Cardiol ; 96: 49-62, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26611884

RESUMO

Cardiac electrophysiology models have been developed for over 50years, and now include detailed descriptions of individual ion currents and sub-cellular calcium handling. It is commonly accepted that there are many uncertainties in these systems, with quantities such as ion channel kinetics or expression levels being difficult to measure or variable between samples. Until recently, the original approach of describing model parameters using single values has been retained, and consequently the majority of mathematical models in use today provide point predictions, with no associated uncertainty. In recent years, statistical techniques have been developed and applied in many scientific areas to capture uncertainties in the quantities that determine model behaviour, and to provide a distribution of predictions which accounts for this uncertainty. In this paper we discuss this concept, which is termed uncertainty quantification, and consider how it might be applied to cardiac electrophysiology models. We present two case studies in which probability distributions, instead of individual numbers, are inferred from data to describe quantities such as maximal current densities. Then we show how these probabilistic representations of model parameters enable probabilities to be placed on predicted behaviours. We demonstrate how changes in these probability distributions across data sets offer insight into which currents cause beat-to-beat variability in canine APs. We conclude with a discussion of the challenges that this approach entails, and how it provides opportunities to improve our understanding of electrophysiology.


Assuntos
Potenciais de Ação , Coração/fisiologia , Modelos Biológicos , Miocárdio/metabolismo , Algoritmos , Animais , Cães , Fenômenos Eletrofisiológicos , Canais Iônicos/metabolismo , Potenciais da Membrana
20.
Anal Chem ; 88(9): 4724-32, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27041344

RESUMO

Estimation of thermodynamic and kinetic parameters in electrochemical studies is usually undertaken via comparison of the experimental results with theory based on a model that mimics the experiment. The present study examines the credibility of transient d.c. and a.c. voltammetric theory-experiment comparisons for recovery of the parameters needed to model the ubiquitous mechanism when an electron transfer (E) reaction is followed by a chemical (C) step in the EC process ([Formula: see text]). The data analysis has been undertaken using optimization methods facilitated in some cases by grid computing. These techniques have been applied to the simulated (5% noise added) and experimental (reduction of trans-stilbene) voltammograms to assess the capabilities of parameter recovery of E(0) (reversible potential for the E step), k(0) (heterogeneous electron transfer rate constant at E(0)), α (charge transfer coefficient for the E step), and k(f) and k(b) (forward and backward rate constants for the C step) under different kinetic regimes. The advantages provided by the use of a.c. instead of d.c. voltammetry and data optimization methods over heuristic approaches to "experiment"-theory comparisons are discussed, as are the limitations in the efficient recovery of a unique set of parameters for the EC mechanism. In the particular experimental case examined herein, results for the protonation of the electrochemically generated stilbene dianion demonstrate that, notwithstanding significant advances in experiment and theory of voltammetric analysis, reliable recovery of the parameters for the EC mechanism with a fast chemical process remains a stiff problem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA