Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Atmos Environ (1994) ; 319: 120301, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38827432

RESUMO

Numerous studies have used air quality models to estimate pollutant concentrations in the Metropolitan Area of São Paulo (MASP) by using different inputs and assumptions. Our objectives are to summarize these studies, compare their performance, configurations, and inputs, and recommend areas of further research. We examined 29 air quality modeling studies that focused on ozone (O3) and fine particulate matter (PM2.5) performed over the MASP, published from 2001 to 2023. The California Institute of Technology airshed model (CIT) was the most used offline model, while the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) was the most used online model. Because the main source of air pollution in the MASP is the vehicular fleet, it is commonly used as the only anthropogenic input emissions. Simulation periods were typically the end of winter and during spring, seasons with higher O3 and PM2.5 concentrations. Model performance for hourly ozone is good with half of the studies with Pearson correlation above 0.6 and root mean square error (RMSE) ranging from 7.7 to 27.1 ppb. Fewer studies modeled PM2.5 and their performance is not as good as ozone estimates. Lack of information on emission sources, pollutant measurements, and urban meteorology parameters is the main limitation to perform air quality modeling. Nevertheless, researchers have used measurement campaign data to update emission factors, estimate temporal emission profiles, and estimate volatile organic compounds (VOCs) and aerosol speciation. They also tested different emission spatial disaggregation approaches and transitioned to global meteorological reanalysis with a higher spatial resolution. Areas of research to explore are further evaluation of models' physics and chemical configurations, the impact of climate change on air quality, the use of satellite data, data assimilation techniques, and using model results in health impact studies. This work provides an overview of advancements in air quality modeling within the MASP and offers practical approaches for modeling air quality in other South American cities with limited data, particularly those heavily impacted by vehicle emissions.

2.
Environ Sci Technol ; 55(10): 6677-6687, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33939403

RESUMO

Since 2001, four emission measurement campaigns have been conducted in multiple traffic tunnels in the megacity of São Paulo, Brazil, an area with a fleet of more than 7 million vehicles running on fuels with high biofuel contents: gasoline + ethanol for light-duty vehicles (LDVs) and diesel + biodiesel for heavy-duty vehicles (HDVs). Emission factors for LDVs and HDVs were calculated using a carbon balance method, the pollutants considered including nitrogen oxides (NOx), carbon monoxide (CO), and sulfur dioxide, as well as carbon dioxide and ethanol. From 2001 to 2018, fleet-average emission factors for LDVs and HDVs, respectively, were found to decrease by 4.9 and 5.1% per year for CO and by 5.5 and 4.2% per year for NOx. These reductions demonstrate that regulations for vehicle emissions adopted in Brazil in the last 30 years improved air quality in the megacity of São Paulo significantly, albeit with a clear delay. These findings, especially those for CO, indicate that official emission inventories underestimate vehicle emissions. Here, we demonstrated that the adoption of emission factors calculated under real-world conditions can dramatically improve air quality modeling in the region.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Poluentes Atmosféricos/análise , Biocombustíveis , Brasil , Monitoramento Ambiental , Gasolina/análise , Veículos Automotores , Óxidos de Nitrogênio/análise , Emissões de Veículos/análise
3.
Environ Pollut ; 331(Pt 2): 121826, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37196840

RESUMO

The Metropolitan Area of São Paulo (MASP) is among the largest urban areas in the Southern Hemisphere. Vehicular emissions are of great concern in metropolitan areas and MASP is unique due to the use of biofuels on a large scale (sugarcane ethanol and biodiesel). In this work, tunnel measurements were employed to assess vehicle emissions and to calculate emission factors (EFs) for heavy-duty and light-duty vehicles (HDVs and LDVs). The EFs were determined for particulate matter (PM) and its chemical compounds. The EFs obtained for 2018 were compared with previous tunnel experiments performed in the same area. An overall trend of reduction of fine and coarse PM, organic carbon (OC), and elemental carbon (EC) EFs for both LDVs and HDVs was observed if compared to those observed in past years, suggesting the effectiveness of vehicular emissions control policies implemented in Brazil. A predominance of Fe, Cu, Al, and Ba emissions was observed for the LDV fleet in the fine fraction. Cu presented higher emissions than two decades ago, which was associated with the increased use of ethanol fuel in the region. For HDVs, Zn and Pb were mostly emitted in the fine mode and were linked with lubricating oil emissions from diesel vehicles. A predominance in the emission of three- and four-ring polycyclic aromatic hydrocarbons (PAHs) for HDVs and five-ring PAHs for LDVs agreed with what was observed in previous studies. The use of biofuels may explain the lower PAH emissions for LDVs (including carcinogenic benzo[a]pyrene) compared to those observed in other countries. The tendency observed was that LDVs emitted higher amounts of carcinogenic species. The use of these real EFs in air quality modeling resulted in more accurate simulations of PM concentrations, showing the importance of updating data with real-world measurements.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Biocombustíveis , Serina Proteases Associadas a Proteína de Ligação a Manose , Monitoramento Ambiental/métodos , Brasil , Material Particulado/análise , Carbono/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Etanol
4.
Geosci Model Dev ; 14(6): 3251-3268, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38813117

RESUMO

We evaluate the performance of the Model of Urban Network of Intersecting Canyons and Highways (MUNICH) in simulating ozone (O3) and nitrogen oxides (NOx) concentrations within the urban street canyons in the São Paulo metropolitan area (SPMA). The MUNICH simulations are performed inside the Pinheiros neighborhood (a residential area) and Paulista Avenue (an economic hub), which are representative urban canyons in the SPMA. Both zones have air quality stations maintained by the São Paulo Environmental Agency (CETESB), providing data (both pollutant concentrations and meteorological) for model evaluation. Meteorological inputs for MUNICH are produced by a simulation with the Weather Research and Forecasting model (WRF) over triple-nested domains with the innermost domain centered over the SPMA at a spatial grid resolution of 1 km. Street coordinates and emission flux rates are retrieved from the Vehicular Emission Inventory (VEIN) emission model, representing the real fleet of the region. The VEIN model has an advantage to spatially represent emissions and present compatibility with MUNICH. Building height is estimated from the World Urban Database and Access Portal Tools (WUDAPT) local climate zone map for SPMA. Background concentrations are obtained from the Ibirapuera air quality station located in an urban park. Finally, volatile organic compound (VOC) speciation is approximated using information from the São Paulo air quality forecast emission file and non-methane hydrocarbon concentration measurements. Results show an overprediction of O3 concentrations in both study cases. NOx concentrations are underpredicted in Pinheiros but are better simulated in Paulista Avenue. Compared to O3, NO2 is better simulated in both urban zones. The O3 prediction is highly dependent on the background concentration, which is the main cause for the model O3 overprediction. The MUNICH simulations satisfy the performance criteria when emissions are calibrated. The results show the great potential of MUNICH to represent the concentrations of pollutants emitted by the fleet close to the streets. The street-scale air pollutant predictions make it possible in the future to evaluate the impacts on public health due to human exposure to primary exhaust gas pollutants emitted by the vehicles.

5.
Environ Int ; 157: 106818, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34425482

RESUMO

This global study, which has been coordinated by the World Meteorological Organization Global Atmospheric Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the differences in both emissions and regional and local meteorology in 2020 compared with the period 2015-2019. By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air quality in and around cities across the globe for the following air pollutants PM2.5, PM10, PMC (coarse fraction of PM), NO2, SO2, NOx, CO, O3 and the total gaseous oxidant (OX = NO2 + O3) during the pre-lockdown, partial lockdown, full lockdown and two relaxation periods spanning from January to September 2020. The analysis is based on in situ ground-based air quality observations at over 540 traffic, background and rural stations, from 63 cities and covering 25 countries over seven geographical regions of the world. Anomalies in the air pollutant concentrations (increases or decreases during 2020 periods compared to equivalent 2015-2019 periods) were calculated and the possible effects of meteorological conditions were analysed by computing anomalies from ERA5 reanalyses and local observations for these periods. We observed a positive correlation between the reductions in NO2 and NOx concentrations and peoples' mobility for most cities. A correlation between PMC and mobility changes was also seen for some Asian and South American cities. A clear signal was not observed for other pollutants, suggesting that sources besides vehicular emissions also substantially contributed to the change in air quality. As a global and regional overview of the changes in ambient concentrations of key air quality species, we observed decreases of up to about 70% in mean NO2 and between 30% and 40% in mean PM2.5 concentrations over 2020 full lockdown compared to the same period in 2015-2019. However, PM2.5 exhibited complex signals, even within the same region, with increases in some Spanish cities, attributed mainly to the long-range transport of African dust and/or biomass burning (corroborated with the analysis of NO2/CO ratio). Some Chinese cities showed similar increases in PM2.5 during the lockdown periods, but in this case, it was likely due to secondary PM formation. Changes in O3 concentrations were highly heterogeneous, with no overall change or small increases (as in the case of Europe), and positive anomalies of 25% and 30% in East Asia and South America, respectively, with Colombia showing the largest positive anomaly of ~70%. The SO2 anomalies were negative for 2020 compared to 2015-2019 (between ~25 to 60%) for all regions. For CO, negative anomalies were observed for all regions with the largest decrease for South America of up to ~40%. The NO2/CO ratio indicated that specific sites (such as those in Spanish cities) were affected by biomass burning plumes, which outweighed the NO2 decrease due to the general reduction in mobility (ratio of ~60%). Analysis of the total oxidant (OX = NO2 + O3) showed that primary NO2 emissions at urban locations were greater than the O3 production, whereas at background sites, OX was mostly driven by the regional contributions rather than local NO2 and O3 concentrations. The present study clearly highlights the importance of meteorology and episodic contributions (e.g., from dust, domestic, agricultural biomass burning and crop fertilizing) when analysing air quality in and around cities even during large emissions reductions. There is still the need to better understand how the chemical responses of secondary pollutants to emission change under complex meteorological conditions, along with climate change and socio-economic drivers may affect future air quality. The implications for regional and global policies are also significant, as our study clearly indicates that PM2.5 concentrations would not likely meet the World Health Organization guidelines in many parts of the world, despite the drastic reductions in mobility. Consequently, revisions of air quality regulation (e.g., the Gothenburg Protocol) with more ambitious targets that are specific to the different regions of the world may well be required.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Pandemias , Material Particulado/análise , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA