RESUMO
SLC30A9 (ZnT9) is a mitochondria-resident zinc transporter. Mutations in SLC30A9 have been reported in human patients with a novel cerebro-renal syndrome. Here, we show that ZnT9 is an evolutionarily highly conserved protein, with many regions extremely preserved among evolutionarily distant organisms. In Drosophila melanogaster (the fly), ZnT9 (ZnT49B) knockdown results in acutely impaired movement and drastic mitochondrial deformation. Severe Drosophila ZnT9 (dZnT9) reduction and ZnT9-null mutant flies are pupal lethal. The phenotype of dZnT9 knockdown can be partially rescued by mouse ZnT9 expression or zinc chelator TPEN, indicating the defect of dZnT9 loss is indeed a result of zinc dyshomeostasis. Interestingly, in the mouse, germline loss of Znt9 produces even more extreme phenotypes: the mutant embryos exhibit midgestational lethality with severe development abnormalities. Targeted mutagenesis of Znt9 in the mouse brain leads to serious dwarfism and physical incapacitation, followed by death shortly. Strikingly, the GH/IGF-1 signals are almost non-existent in these tissue-specific knockout mice, consistent with the medical finding in some human patients with severe mitochondrial deficiecny. ZnT9 mutations cause mitochondrial zinc dyshomeostasis, and we demonstrate mechanistically that mitochondrial zinc elevation quickly and potently inhibits the activities of respiration complexes. These results reveal the critical role of ZnT9 and mitochondrial zinc homeostasis in mammalian development. Based on our functional analyses, we finally discussed the possible nature of the so far identified human SLC30A9 mutations.
Assuntos
Proteínas de Transporte de Cátions , Desenvolvimento Embrionário , Mitocôndrias , Zinco , Animais , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Humanos , Zinco/metabolismo , Camundongos , Mitocôndrias/metabolismo , Desenvolvimento Embrionário/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/embriologia , Evolução Molecular , Camundongos Knockout , Sequência de Aminoácidos , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Fatores de Transcrição , Proteínas de Ciclo CelularRESUMO
Senescence in bone marrow mesenchymal stem cells (BMSCs), triggered by excessive oxidative stress, plays a crucial role in the onset of postmenopausal osteoporosis. Recent studies underscore the importance of mitochondrial rehabilitation and quality control as key determinants in the modulation of oxidative stress and cellular senescence. MitoTEMPO, a mitochondria-targeted antioxidant, has been shown to mitigate the heightened levels of reactive oxygen species (ROS). In our research, we observed that BMSCs from ovariectomized (OVX) rats displayed premature senescence, which was attributed to combined mitochondrial and lysosomal dysfunction, a condition that worsens with extended estrogen deprivation. Treatment with MitoTEMPO effectively reversed these effects, reinstating lysosomal functionality and suppressing the mitochondrial unfolded protein response (UPRmt). Subsequent in vivo experiments corroborated these observations, revealing that MitoTEMPO administration in OVX rats curtailed trabecular bone loss and reduced the expression of p53, HSP60, and CLPP in the trabecular bone region of the proximal tibia. Overall, our findings suggest that MitoTEMPO holds promise as a therapeutic agent to counteract senescence in OVX-BMSCs, offering a potential strategy for treating postmenopausal osteoporosis.
Assuntos
Antioxidantes , Senescência Celular , Células-Tronco Mesenquimais , Mitocôndrias , Ovariectomia , Estresse Oxidativo , Espécies Reativas de Oxigênio , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Feminino , Senescência Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ratos , Ratos Sprague-Dawley , Compostos Organotiofosforados/farmacologia , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Osteoporose Pós-Menopausa/metabolismo , Osteoporose Pós-Menopausa/patologia , Proteína Supressora de Tumor p53/metabolismo , Humanos , Compostos Organofosforados , PiperidinasRESUMO
PURPOSE: The identification of tau accumulation within living brains holds significant potential in facilitating accurate diagnosis of progressive supranuclear palsy (PSP). While visual assessment is frequently employed, standardized methods for tau positron emission tomography (PET) specifically in PSP are absent. We aimed to develop a visual reading algorithm dedicated to the evaluation of [18F]Florzolotau PET in PSP. METHODS: 148 PSP and 30 healthy volunteers were divided into a development set (for the establishment of the reading rules; n = 89) and a testing set (for the validation of the reading rules; n = 89). For differential diagnosis, 55 α-synucleinopathies were additionally included into the testing set. The visual reading method was established by an experienced assessor (Reader 0) and was then validated by Reader 0 and two additional readers on regional and overall binary manners. A positive binding in both midbrain and globus pallidus/putamen regions was characterized as a PSP-like pattern, whereas any other pattern was classified as non-PSP-like. RESULTS: Reader 1 (94.4%) and Reader 2 (93.8%) showed excellent agreement for the overall binary determination against Reader 0. The regional binary determinations of midbrain and globus pallidus/putamen showed excellent agreement among readers (kappa > 0.80). The overall binary evaluation demonstrated reproducibility of 86.1%, 94.4% and 77.8% for three readers. The visual reading algorithm showed high agreement with regional standardized uptake value ratios and clinical diagnoses. CONCLUSION: Through the application of the suggested visual reading algorithm, [18F]Florzorotau PET imaging demonstrated a robust performance for the imaging diagnosis of PSP.
RESUMO
PURPOSE: Diffuse midline glioma (DMG), H3 K27M-mutant is a type of diffuse high-grade glioma that occurs in the brain midline carrying an extremely poor prognosis under the best efforts of surgery, radiation, and other therapies. For better therapy, we explored the efficacy and toxicity of a novel therapy that combines apatinib and temozolomide in DMG. METHODS: A retrospective analysis of 32 patients with DMG who underwent apatinib plus temozolomide treatment was performed. Apatinib was given 500 mg in adults, 250 mg in pediatric patients once daily. Temozolomide was administered at 200 mg/m2/d according to the standard 5/28 days regimen. The main clinical data included basic information of patients, radiological and pathological characteristics of tumors, treatment, adverse reactions, prognosis. RESULTS: The objective response rate was 24.1%, and the disease control rate was 79.3%. The median PFS of all patients was 5.8 months, and median OS was 10.3 months. A total of 236 cycles of treatment were available for safety assessment and the toxicity of the combination therapy was relatively well tolerated. The most common grade 3 toxicities were myelosuppression including leukopenia (5.08%), neutropenia (4.24%), lymphopenia (2.12%), thrombocytopenia (1.69%) and anemia (1.27%). Grade 4 toxicities included neutropenia (2.12%), thrombocytopenia (2.12%) and proteinuria (1.69%). All the adverse events were relieved after symptomatic treatment or dose reduction. CONCLUSIONS: Apatinib plus temozolomide could be an effective regimen with manageable toxicities and favorable efficacy and may outperform temozolomide monotherapy, particularly in newly diagnosed adults with tumors located outside the pons. The novel therapy deserves further investigation in adult DMG patients.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Encefálicas , Glioma , Piridinas , Temozolomida , Humanos , Temozolomida/administração & dosagem , Temozolomida/uso terapêutico , Temozolomida/efeitos adversos , Feminino , Masculino , Adulto , Piridinas/administração & dosagem , Piridinas/efeitos adversos , Piridinas/uso terapêutico , Glioma/tratamento farmacológico , Glioma/patologia , Adolescente , Estudos Retrospectivos , Criança , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Adulto Jovem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Pré-Escolar , Pessoa de Meia-Idade , Resultado do TratamentoRESUMO
Tracking carboxylesterases (CESs) through noninvasive and dynamic imaging is of great significance for diagnosing and treating CES-related metabolic diseases. Herein, three BODIPY-based fluorescent probes with a pyridine unit quaternarized via an acetoxybenzyl group were designed and synthesized to detect CESs based on the photoinduced electron transfer process. Notably, among these probes, BDPN2-CES exhibited a remarkable 182-fold fluorescence enhancement for CESs within 10 min. Moreover, BDPN2-CES successfully enabled real-time imaging of endogenous CES variations in living cells. Using BDPN2-CES, a visual high-throughput screening method for CES inhibitors was established, culminating in the discovery of an efficient inhibitor, WZU-13, sourced from a chemical library. These findings suggest that BDPN2-CES could provide a new avenue for diagnosing CES-related diseases, and WZU-13 emerges as a promising therapeutic candidate for CES-overexpression pathological processes.
Assuntos
Compostos de Boro , Carboxilesterase , Inibidores Enzimáticos , Corantes Fluorescentes , Ensaios de Triagem em Larga Escala , Humanos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Ensaios de Triagem em Larga Escala/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Compostos de Boro/química , Compostos de Boro/farmacologia , Carboxilesterase/antagonistas & inibidores , Carboxilesterase/metabolismo , Carboxilesterase/análise , Desenho de Fármacos , Estrutura MolecularRESUMO
Three isostructural transition metal-organic frameworks, [M(bta)0.5(bpt)(H2O)2]·2H2O (M = Co (1), Ni (2), Zn (3), H4bta = 1,2,4,5-benzenetetracarboxylic acid, bpt = 4-amino-3,5-bis(4-pyridyl)-1,2,4-triazole), were successfully constructed using different metal cations. These frameworks exhibit a three-dimensional network structure with multiple coordinated and lattice water molecules within the framework, contributing to high stability and a rich hydrogen-bond network. Proton conduction studies revealed that, at 333 K and 98% relative humidity, the proton conductivities (σ) of MOFs 1-3 reached 1.42 × 10-2, 1.02 × 10-2, and 6.82 × 10-3 S cm-1, respectively. Compared to the proton conductivity of the initial ligands, the σ values of the complexes increased by 2 orders of magnitude, with the activation energies decreasing from 0.36 to 0.18 eV for 1, 0.09 eV for 2, and 0.12 eV for 3. An in-depth analysis of the correlation between different metal centers and proton conduction performance indicated that the varying coordination abilities of the metal cations and the water absorption capacities of the frameworks might account for the differences in conductivity. Additionally, the potential of 1 as a supercapacitor electrode material was assessed. 1 exhibited a specific capacitance of 61.13 F g-1 at a current density of 0.5 A g-1, with a capacitance retention of 82.4% after 5000 cycles, making it a promising candidate for energy storage applications.
RESUMO
Cadmium (Cd) as a ubiquitous toxic heavy metal is reported to affect the nervous system. Selenium (Se) has been shown to have antagonistic effects against heavy metal toxicity. In addition, it shows potential antioxidant and anti-inflammatory properties. Thus, the purpose of this study was to determine the possible mechanism of brain injury after high Cd exposure and the mitigation of Nano-selenium (Nano-Se) against Cd-induced brain injury. In this study, the Cd-treated group showed a decrease in the number of neurons in brain tissue, swelling of the endoplasmic reticulum and mitochondria, and the formation of autophagosomes. Nano-Se intervention restored Cd-caused alterations in neuronal morphology, endoplasmic reticulum, and mitochondrial structure, thereby reducing neuronal damage. Furthermore, we found that some differentially expressed genes were involved in cell junction and molecular functions. Subsequently, we selected eleven (11) related differentially expressed genes for verification. The qRT-PCR results revealed the same trend of results as determined by RNA-Seq. Our findings also showed that Nano-Se supplementation alleviated Cx43 phosphorylation induced by Cd exposure. Based on immunofluorescence colocalization it was demonstrated that higher expression of GFAP and lower expressions of Cx43 were restored by Nano-Se supplementation. In conclusion, the data presented in this study establish a direct association between the phosphorylation of Cx43 and the occurrence of autophagy and neuroinflammation. However, it is noteworthy that the introduction of Nano-Se supplementation has been observed to mitigate these alterations. These results elucidate the relieving effect of Nano-Se on Cd exposure-induced brain injury.
Assuntos
Lesões Encefálicas , Cérebro , Selênio , Humanos , Selênio/farmacologia , Cádmio/toxicidade , Conexina 43/metabolismo , Conexinas/metabolismo , Fosforilação , Cérebro/metabolismoRESUMO
In this paper, a novel fluorescent detection method for glucose and lactic acid was developed based on fluorescent iron nanoclusters (Fe NCs). The Fe NCs prepared using hemin as the main raw material exhibited excellent water solubility, bright red fluorescence, and super sensitive response to hydrogen peroxide (H2O2). This paper demonstrates that Fe NCs exhibit excellent peroxide-like activity, catalyzing H2O2 to produce hydroxyl radicals (â¢OH) that can quench the red fluorescence of Fe NCs. In this paper, a new type of glucose sensor was established by combining Fe NCs with glucose oxidase (GluOx). With the increase in glucose content, the fluorescence of Fe NCs decreases correspondingly, and the glucose content can be detected in the scope of 0-200 µmol·L-1 (µM). Similarly, the lactic acid sensor can also be established by combining Fe NCs with lactate oxidase (LacOx). With the increase in lactic acid concentration, the fluorescence of Fe NCs decreases correspondingly, and the lactic acid content can be detected in the range of 0-100 µM. Furthermore, Fe NCs were used in the preparation of gel test strip, which can be used to detect H2O2, glucose and lactic acid successfully by the changes of fluorescent intensity.
Assuntos
Glucose Oxidase , Glucose , Peróxido de Hidrogênio , Ferro , Ácido Láctico , Ácido Láctico/análise , Ácido Láctico/química , Glucose/análise , Glucose/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Ferro/química , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Técnicas Biossensoriais/métodos , Fluorescência , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/química , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Nanopartículas Metálicas/químicaRESUMO
Lead halide perovskite nanocrystals (LHP NCs) are regarded as promising emitters for next-generation ultrahigh-definition displays due to their high color purity and wide color gamut. Recently, the external quantum efficiency (EQE) of LHP NC based light-emitting diodes (PNC LEDs) has been rapidly improved to a level required by practical applications. However, the poor operational stability of the device, caused by halide ion migration at the grain boundary of LHP NC thin films, remains a great challenge. Herein, we report a resurfacing strategy via pseudohalogen ions to mitigate detrimental halide ion migration, aiming to stabilize PNC LEDs. We employ a thiocyanate solution processed post-treatment method to efficiently resurface CsPbBr3 NCs and demonstrate that the thiocyanate ions can effectively inhibit bromide ion migration in LHP NC thin films. Owing to thiocyanate resurfacing, we fabricated LEDs with a high EQE of 17.3%, a maximum brightness of 48000 cd m-2, and an excellent operation half-life time.
RESUMO
INTRODUCTION: The objective of this study is to investigate the incremental value of amyloid positron emission tomography (Aß-PET) in a tertiary memory clinic setting in China. METHODS: A total of 1073 patients were offered Aß-PET using 18F-florbetapir. The neurologists determined a suspected etiology (Alzheimer's disease [AD] or non-AD) with a percentage estimate of their confidence and medication prescription both before and after receiving the Aß-PET results. RESULTS: After disclosure of the Aß-PET results, etiological diagnoses changed in 19.3% of patients, and diagnostic confidence increased from 69.3% to 85.6%. Amyloid PET results led to a change of treatment plan in 36.5% of patients. Compared to the late-onset group, the early-onset group had a more frequent change in diagnoses and a higher increase in diagnostic confidence. DISCUSSION: Aß-PET has significant impacts on the changes of diagnoses and management in Chinese population. Early-onset cases are more likely to benefit from Aß-PET than late-onset cases. HIGHLIGHTS: Amyloid PET contributes to diagnostic changes and its confidence in Chinese patients. Amyloid PET leads to a change of treatment plans in Chinese patients. Early-onset cases are more likely to benefit from amyloid PET than late-onset cases.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Amiloide , Doença de Alzheimer/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Proteínas Amiloidogênicas , Compostos de Anilina , China , Peptídeos beta-Amiloides , Disfunção Cognitiva/diagnósticoRESUMO
Tobacco smoking is the leading cause of preventable death and disease. Although there are some FAD-approved medicines for controlling smoking, the relapse rate remains very high. Among the factors that could induce nicotine relapse, stress might be the most important one. In the last decades, preclinical studies have generated many new findings that lead to a better understanding of stress-induced relapse of nicotine-seeking. Several molecules such as α3ß4 nicotinic acetylcholine receptor, α2-adrenergic receptors, cannabinoid receptor 1, trace amine-associated receptor 1, and neuropeptide systems (corticotropin-releasing factor and its receptors, dynorphine and kappa opioid receptor) have been linked to stress-induced nicotine relapse. In this review, we discuss recent advances in the neurobiology, treatment targets, and potential therapeutics of stress-induced nicotine relapse. We also discuss some factors that may influence stress-induced nicotine relapse and that should be considered in future studies. In the final section, a perspective on some research directions is provided. Further investigation on the neurobiology of stress-induced nicotine relapse will shed light on the development of new medicines for controlling smoking and will help us understand the interactions between the stress and reward systems in the brain.
Assuntos
Receptores Nicotínicos , Tabagismo , Humanos , Nicotina/uso terapêutico , Tabagismo/tratamento farmacológico , Recompensa , Hormônio Liberador da Corticotropina/farmacologia , RecidivaRESUMO
To explore the potential network markers and related signaling pathways of human B cells infected by COVID-19, we performed standardized integration and analysis of single-cell sequencing data to construct conditional cell-specific networks (CCSN) for each cell. Then the peripheral blood cells were clustered and annotated based on the conditional network degree matrix (CNDM) and gene expression matrix (GEM), respectively, and B cells were selected for further analysis. Besides, based on the CNDM of B cells, the hub genes and 'dark' genes (a gene has a significant difference between case and control samples not in a gene expression level but in a conditional network degree level) closely related to COVID-19 were revealed. Interestingly, some of the 'dark' genes and differential degree genes (DDGs) encoded key proteins in the JAK-STAT pathway, which had antiviral effects. The protein p21 encoded by the 'dark' gene CDKN1A was a key regulator for the COVID-19 infection-related signaling pathway. Elevated levels of proteins encoded by some DDGs were directly related to disease severity of patients with COVID-19. In short, the proteins encoded by 'dark' genes complement some missing links in COVID-19 and these signaling pathways played an important role in the growth and activation of B cells.
Assuntos
COVID-19 , Transdução de Sinais , Humanos , Transdução de Sinais/genética , Janus Quinases/genética , Fatores de Transcrição STAT/genética , COVID-19/genética , Redes Reguladoras de Genes , Perfilação da Expressão GênicaRESUMO
Chiral metal nanoclusters have recently been attracting great attention. It is challenging to realize asymmetric catalysis via atomically precise metal nanoclusters. Herein, we report the synthesis and total structure determination of chiral clusters [Au7Ag8(dppf)3(l-/d-proline)6](BF4)2 (l-/d-Au7Ag8). Superatomic clusters l-/d-Au7Ag8 display intense and mirror-image Cotton effects in their CD spectra. Density functional theory (DFT) calculations were carried out to understand the correlation between electronic structures and the optical activity of the enantiomeric pair. Surprisingly, the incorporation of proline in a metal nanocluster can significantly promote the catalytic efficiency in asymmetric Aldol reactions. The increase of catalytic activity of Au7Ag8 in comparison with organocatalysis by proline is attributed to the cooperative effect of the metal core and prolines, showing the advantages of the integration of metal catalysis and organocatalysis in a metal nanocluster.
RESUMO
Coupling hollow semiconductor with metal-organic frameworks (MOFs) holds great promise for constructing high-efficient CO2 photoreduction systems. However, energy band mismatch between them makes it difficult to exert their advantages to maximize the overall photocatalytic efficiency, since that the blockage of desirable interfacial charge transfer gives rise to the enrichment of photoelectrons and CO2 molecules on the different locations. Herein, an interfacial engineering is presented to overcome this impediment, based on the insertion of plasmonic metal into the heterointerfaces between them, forming a stacked semiconductor/metal@MOF photocatalyst. Experimental observations and theoretical simulations validate the critical roles of embedded Au in maneuvering the charge separation/transfer and surface reaction: (i) bridges the photoelectron transfer from hollow CdS (H-CdS) to ZIF-8; (ii) produces hot electrons and shifts them to ZIF-8; (iii) induces the formation of ZIF-8 defects in promoting the CO2 adsorption/activation and transformation to CO with low energy barriers. Consequently, the as-prepared H-CdS/Au@ZIF-8 with optimal ZIF-8 thickness exhibits distinctly boosted activity and superb selectivity in CO production as compared with H-CdS@ZIF-8 and other counterparts. This work provides protocols to take full advantages of components involved for enhanced solar-to-chemical energy conversion efficiency of hybrid artificial photosynthetic systems through rationally harnessing the charge transfer between them.
RESUMO
PURPOSE: Human post mortem studies have described the topographical patterns of tau pathology in progressive supranuclear palsy (PSP). Recent advances in tau PET tracers are expected to herald the next era of PSP investigation for early detection of tau pathology in living brains. This study aimed to investigate whether 18F-Florzolotau PET imaging may capture the distribution patterns and regional vulnerability of tau pathology in PSP, and to devise a novel image-based staging system. METHODS: The study cohort consisted of 148 consecutive patients with PSP who had undergone 18F-Florzolotau PET imaging. The PSP rating scale (PSPrs) was used to measure disease severity. Similarities and differences of tau deposition among different clinical phenotypes were examined at the regional and voxel levels. An 18F-Florzolotau pathological staging system was devised according to the scheme originally developed for post mortem data. In light of conditional probabilities for the sequence of events, an 18F-Florzolotau modified staging system by integrating clusters at the regional level was further developed. The ability of 18F-Florzolotau staging systems to reflect disease severity in terms of PSPrs score was assessed by analysis of variance. RESULTS: The distribution patterns of 18F-Florzolotau accumulation in living brains of PSP showed a remarkable similarity to those reported in post mortem studies, with the binding intensity being markedly higher in Richardson's syndrome. Moreover, 18F-Florzolotau PET imaging allowed detecting regional vulnerability and tracking tau accumulation in an earlier fashion compared with post mortem immunostaining. The 18F-Florzolotau staging systems were positively correlated with clinical severity as reflected by PSPrs scores. CONCLUSIONS: 18F-Florzolotau PET imaging can effectively capture the distribution patterns and regional vulnerability of tau pathology in PSP. The 18F-Florzolotau modified staging system holds promise for early tracking of tau deposition in living brains.
Assuntos
Paralisia Supranuclear Progressiva , Humanos , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Proteínas tau/metabolismoRESUMO
Organic ultralong room-temperature phosphorescence (RTP) materials have attracted great attention for their wide applications in optoelectronic devices and bioimaging. However, the development of these materials remains a challenging task, partially due to the lack of rational molecular design strategies and unclear luminescence mechanisms. Herein, we present a method for facile access to structurally diverse substituted 1-aminoisoquinoline derivatives through a copper-catalyzed one-pot three-component coupling reaction that provides a promising approach to rapidly assemble a library of 1-aminoisoquinolines for exploring the regularity of the host-guest doped system. A series of host-guest RTP materials with wide-ranging lifetimes from 4.4 to 299.3â ms were constructed by doping various substituted isoquinolines derivatives into benzophenone (BP). Furthermore, 4 r/BP nanoparticles could be used for in-vivo imaging with a signal-to-noise ratio value as high as 32, revealing the potential of the isoquinoline framework for the construction of high-performance RTP materials.
Assuntos
Benzofenonas , Isoquinolinas , TemperaturaRESUMO
BACKGROUND: Recent development in tau-sensitive tracers has sparkled significant interest in tracking tauopathies using positron emission tomography (PET) biomarkers. However, the ability of 18 F-florzolotau PET imaging to topographically characterize tau pathology in corticobasal syndrome (CBS) remains unclear. Further, the question as to whether disease-level differences exist with other neurodegenerative tauopathies is still unanswered. OBJECTIVE: To analyze the topographical patterns of tau pathology in the living brains of patients with CBS using 18 F-florzolotau PET imaging and to examine whether differences with other tauopathies exist. METHODS: 18 F-florzolotau PET imaging was performed in 20 consecutive patients with CBS, 20 cognitively healthy controls (HCs), 20 patients with Alzheimer's disease (AD), and 16 patients with progressive supranuclear palsy-Richardson's syndrome (PSP-RS). Cerebrospinal fluid (CSF) levels of ß-amyloid biomarkers were quantified in all patients with CBS. 18 F-florzolotau uptake was quantitatively assessed using standardized uptake value ratios. RESULTS: Of the 20 patients with CBS, 19 (95%) were negative for CSF biomarkers of amyloid pathology; of them, three had negative 18 F-florzolotau PET findings. Compared with HCs, patients with CBS showed increased 18 F-florzolotau signals in both cortical and subcortical regions. In addition, patients with CBS were characterized by higher tracer retentions in subcortical regions compared with those with AD and showed a trend toward higher signals in cortical areas compared with PSP-RS. An asymmetric pattern of 18 F-florzolotau uptake was associated with an asymmetry of motor severity in patients with CBS. CONCLUSIONS: In vivo 18 F-florzolotau PET imaging holds promise for distinguishing CBS in the spectrum of neurodegenerative tauopathies. © 2023 International Parkinson and Movement Disorder Society.
Assuntos
Degeneração Corticobasal , Tomografia por Emissão de Pósitrons , Tauopatias , Humanos , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Degeneração Corticobasal/diagnóstico por imagem , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons/métodos , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/patologia , Proteínas tau/metabolismo , Tauopatias/diagnóstico por imagemRESUMO
We present Knowledge Engine for Genomics (KnowEnG), a free-to-use computational system for analysis of genomics data sets, designed to accelerate biomedical discovery. It includes tools for popular bioinformatics tasks such as gene prioritization, sample clustering, gene set analysis, and expression signature analysis. The system specializes in "knowledge-guided" data mining and machine learning algorithms, in which user-provided data are analyzed in light of prior information about genes, aggregated from numerous knowledge bases and encoded in a massive "Knowledge Network." KnowEnG adheres to "FAIR" principles (findable, accessible, interoperable, and reuseable): its tools are easily portable to diverse computing environments, run on the cloud for scalable and cost-effective execution, and are interoperable with other computing platforms. The analysis tools are made available through multiple access modes, including a web portal with specialized visualization modules. We demonstrate the KnowEnG system's potential value in democratization of advanced tools for the modern genomics era through several case studies that use its tools to recreate and expand upon the published analysis of cancer data sets.
Assuntos
Algoritmos , Computação em Nuvem , Mineração de Dados/métodos , Genômica/métodos , Software , Análise por Conglomerados , Biologia Computacional/métodos , Análise de Dados , Conjuntos de Dados como Assunto , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Conhecimento , Aprendizado de Máquina , Metabolômica/métodosRESUMO
Functionalized crystalline solids based on metal-organic frameworks (MOFs) enable efficient luminescence detection and high proton conductivity, making them crucial in the realms of environmental monitoring and clean energy. Here, two structurally and functionally distinct zinc-based MOFs, [Zn(TTDPa)(bodca)]·H2O (1) and [Zn(TTDPb)(bodca)]·H2O (2), were successfully designed and synthesized using 3,6-di(pyridin-4-yl)thieno[3,2-b]thiophene (TTDPa) and 2,5-di(pyridin-4-yl)thieno[3,2-b]thiophene (TTDPb) as ligands, in the presence of bicyclo[2.2.2]octane-1,4-dicarboxylic acid (H2bodca). Both 1 and 2 display a three-dimensional (3D) structure with 5-fold interpenetration, and notably, 2 forms a larger one-dimensional pore measuring 17.16 × 10.81 Å2 in size. Fluorescence experiments demonstrate that 1 and 2 can function as luminescent sensors for nitrofurantoin (NFT) and nitrofurazone (NFZ) with low detection limits, remarkable selectivity, and good recyclability. A comprehensive analysis was conducted to investigate the differing sensing effects of compounds 1 and 2 and to explore potential sensing mechanisms. Additionally, at 328 K and 98% relative humidity, 1 and 2 exhibit proton conductivity values of 2.13 × 10-3 and 4.91 × 10-3 S cm-1, respectively, making them suitable proton-conducting materials. Hence, the integration of luminescent sensing and proton conductivity in monophasic 3D Zn-MOFs holds significant potential for application in intelligent multitasking devices.
RESUMO
The functional role of autophagy in regulating differentiation of bone marrow mesenchymal stem cells (MSCs) has been studied extensively, but the underlying mechanism remains largely unknown. The Wnt/ß-catenin signaling pathway plays a pivotal role in the initiation of osteoblast differentiation of mesenchymal progenitor cells, and the stability of core protein ß-catenin is tightly controlled by the APC/Axin/GSK-3ß/Ck1α complex. Here we showed that genistein, a predominant soy isoflavone, stimulated osteoblast differentiation of MSCs in vivo and in vitro. Female rats were subjected to bilateral ovariectomy (OVX); four weeks after surgery the rats were orally administered genistein (50 mg·kg-1·d-1) for 8 weeks. The results showed that genistein administration significantly suppressed the bone loss and bone-fat imbalance, and stimulated bone formation in OVX rats. In vitro, genistein (10 nM) markedly activated autophagy and Wnt/ß-catenin signaling pathway, and stimulated osteoblast differentiation in OVX-MSCs. Furthermore, we found that genistein promoted autophagic degradation of adenomatous polyposis coli (APC), thus initiated ß-catenin-driven osteoblast differentiation. Notably, genistein activated autophagy through transcription factor EB (TFEB) rather than mammalian target of rapamycin (mTOR). These findings unveil the mechanism of how autophagy regulates osteogenesis in OVX-MSCs, which expands our understanding that such interplay could be employed as a useful therapeutic strategy for treating postmenopausal osteoporosis.