Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Methods ; 20(8): 1183-1186, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37474809

RESUMO

Open-3DSIM is an open-source reconstruction platform for three-dimensional structured illumination microscopy. We demonstrate its superior performance for artifact suppression and high-fidelity reconstruction relative to other algorithms on various specimens and over a range of signal-to-noise levels. Open-3DSIM also offers the capacity to extract dipole orientation, paving a new avenue for interpreting subcellular structures in six dimensions (xyzθλt). The platform is available as MATLAB code, a Fiji plugin and an Exe application to maximize user-friendliness.


Assuntos
Iluminação , Microscopia , Microscopia/métodos , Iluminação/métodos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
2.
Anal Chem ; 96(27): 11052-11060, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38924514

RESUMO

Mitochondrial cristae, invaginations of the inner mitochondrial membrane (IMM) into the matrix, are the main site for the generation of ATP via oxidative phosphorylation, and mitochondrial membrane potential (MMP). Synchronous study of the dynamic relationship between cristae and MMP is very important for further understanding of mitochondrial function. Due to the lack of suitable IMM probes and imaging techniques, the dynamic relationship between MMP and cristae structure alterations remains poorly understood. We designed a pair of FRET-based molecular probes, with the donor (OR-LA) being rhodamine modified with mitochondrial coenzyme lipoic acid and the acceptor (SiR-BA) being silicon-rhodamine modified with a butyl chain, for simultaneous dynamic monitoring of mitochondrial cristae structure and MMP. The FRET process of the molecular pair in mitochondria is regulated by MMP, enabling more precise visualization of MMP through fluorescence intensity ratio and fluorescence lifetime. By combining FRET with FLIM super-resolution imaging technology, we achieved simultaneous dynamic monitoring of mitochondrial cristae structure and MMP, revealing that during the decline of MMP, there is a progression involving cristae dilation, fragmentation, mitochondrial vacuolization, and eventual rupture. Significantly, we successfully observed that the rapid decrease in MMP at the site of mitochondrial membrane rupture may be a critical factor in mitochondrial fragmentation. These data collectively reveal the dynamic relationship between cristae structural alterations and MMP decline, laying a foundation for further investigation into cellular energy regulation mechanisms and therapeutic strategies for mitochondria-related diseases.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Potencial da Membrana Mitocondrial , Rodaminas , Humanos , Rodaminas/química , Corantes Fluorescentes/química , Imagem Óptica , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/química , Células HeLa
4.
Light Sci Appl ; 13(1): 116, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38782912

RESUMO

Mitochondria are crucial organelles closely associated with cellular metabolism and function. Mitochondrial DNA (mtDNA) encodes a variety of transcripts and proteins essential for cellular function. However, the interaction between the inner membrane (IM) and mtDNA remains elusive due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vivo probes specifically targeting the IM. Here, we have developed a novel fluorescence probe called HBmito Crimson, characterized by exceptional photostability, fluorogenicity within lipid membranes, and low saturation power. We successfully achieved over 500 frames of low-power stimulated emission depletion microscopy (STED) imaging to visualize the IM dynamics, with a spatial resolution of 40 nm. By utilizing dual-color imaging of the IM and mtDNA, it has been uncovered that mtDNA tends to habitat at mitochondrial tips or branch points, exhibiting an overall spatially uniform distribution. Notably, the dynamics of mitochondria are intricately associated with the positioning of mtDNA, and fusion consistently occurs in close proximity to mtDNA to minimize pressure during cristae remodeling. In healthy cells, >66% of the mitochondria are Class III (i.e., mitochondria >5 µm or with >12 cristae), while it dropped to <18% in ferroptosis. Mitochondrial dynamics, orchestrated by cristae remodeling, foster the even distribution of mtDNA. Conversely, in conditions of apoptosis and ferroptosis where the cristae structure is compromised, mtDNA distribution becomes irregular. These findings, achieved with unprecedented spatiotemporal resolution, reveal the intricate interplay between cristae and mtDNA and provide insights into the driving forces behind mtDNA distribution.

5.
Light Sci Appl ; 13(1): 125, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38806501

RESUMO

Structured illumination microscopy (SIM) has emerged as a promising super-resolution fluorescence imaging technique, offering diverse configurations and computational strategies to mitigate phototoxicity during real-time imaging of biological specimens. Traditional efforts to enhance system frame rates have concentrated on processing algorithms, like rolling reconstruction or reduced frame reconstruction, or on investments in costly sCMOS cameras with accelerated row readout rates. In this article, we introduce an approach to elevate SIM frame rates and region of interest (ROI) coverage at the hardware level, without necessitating an upsurge in camera expenses or intricate algorithms. Here, parallel acquisition-readout SIM (PAR-SIM) achieves the highest imaging speed for fluorescence imaging at currently available detector sensitivity. By using the full frame-width of the detector through synchronizing the pattern generation and image exposure-readout process, we have achieved a fundamentally stupendous information spatial-temporal flux of 132.9 MPixels · s-1, 9.6-fold that of the latest techniques, with the lowest SNR of -2.11 dB and 100 nm resolution. PAR-SIM demonstrates its proficiency in successfully reconstructing diverse cellular organelles in dual excitations, even under conditions of low signal due to ultra-short exposure times. Notably, mitochondrial dynamic tubulation and ongoing membrane fusion processes have been captured in live COS-7 cell, recorded with PAR-SIM at an impressive 408 Hz. We posit that this novel parallel exposure-readout mode not only augments SIM pattern modulation for superior frame rates but also holds the potential to benefit other complex imaging systems with a strategic controlling approach.

6.
Chem Commun (Camb) ; 59(87): 13038-13041, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37843422

RESUMO

Mitochondrial probe SiRPFA was synthesized by attaching a long perfluoroalkyl chain on Si-rhodamine cationic dye. High lipophilicity endowed SiRPFA with mitochondrial membrane potential independent properties. Under stimulated emission depletion microscopy, SiRPFA clearly revealed changes in mitochondrial cristae morphology during autophagy induced by starvation or apoptosis.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Rodaminas/metabolismo , Membranas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Microscopia de Fluorescência/métodos , Potencial da Membrana Mitocondrial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA