Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Allergy ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659216

RESUMO

BACKGROUND: Ambient pollen exposure causes nasal, ocular, and pulmonary symptoms in allergic individuals, but the shape of the exposure-response association is not well characterized. We evaluated this association and determined (1) whether symptom severity differs between subpopulations; (2) how the association changes over the course of the pollen season; and (3) which pollen exposure time lags affect symptoms. METHODS: Adult study participants (n = 396) repeatedly scored severity of nasal, ocular, and pulmonary allergic symptoms, resulting in three composite symptom scores. We calculated hourly individually relevant pollen exposure to seven allergenic plants (alder, ash, birch, hazel, grasses, mugwort, and ragweed) considering personal sensitization and exposure time lags of up to 96 h. We fitted generalized additive mixed models, with a random personal intercept, adjusting for weather and air pollution as potential time-varying confounders. RESULTS: We identified a clear nonlinear positive association between pollen exposure and ocular and nasal symptom severity in the pollen allergy group: Symptom severity increased steeply with increasing exposure initially, but attenuated beyond approximately 80 pollen/m3. We found no evidence of an exposure threshold, below which no symptoms occur. While recent pollen exposure in the last approximately 5 h affected symptoms most, associations lingered for up to 60 h. Grass pollen exposure (compared to tree pollen) and younger age (18-30 years, as opposed to 30-65 years) were both associated with higher nasal and ocular symptom severity. CONCLUSIONS: The lack of a threshold and attenuated dose-response curve may have implications for pollen warning systems, which may be revised to include multiday pollen concentrations in the future.

2.
Environ Res ; 256: 119224, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797464

RESUMO

BACKGROUND: Recent studies have related high pollen concentrations to increased cardiovascular morbidity and mortality, yet very little research concerns pre-clinical cardiovascular health, including effects on blood pressure (BP). The EPOCHAL panel study investigated the exposure-response relationship between ambient pollen exposure and systolic and diastolic BP in adults. METHODS: BP was measured in 302 adults with and in 94 without pollen allergy during the pollen season, on approximately 16 days per person (6253 observations). Average individually-relevant pollen exposure in the 96 h prior to each BP measurement was calculated by summing up the averages of all ambient pollen concentrations to which the individual was found to be sensitized in a skin prick test, and which originated from seven highly allergenic pollen types (hazel, alder, birch, ash, grasses, mugwort and ragweed). Generalized additive mixed models were used to study the association between mean individually-relevant pollen exposure in the last 96 h and BP, adjusting for individual and environmental time-varying covariates. Effect modification by pollen allergy status, sex and BMI was evaluated. RESULTS: Positive non-linear associations between individually-relevant pollen exposure and both systolic and diastolic BP were found in the allergic but not in the non-allergic group. BP increased sharply for exposures from zero to 60/80 pollen/m3 (diastolic/systolic BP), followed by a tempered further increase at higher concentrations. Increases of 2.00 mmHg [95% confidence interval (CI): 0.80-3.19] in systolic and 1.51 mmHg [95% CI: 0.58-2.45] in diastolic BP were associated with 96-h average pollen exposure of 400 pollen/m3, compared to no exposure. Obesity and female sex were associated with larger BP increases. CONCLUSIONS: The finding that short-term pollen concentration is associated with increased systolic and diastolic BP in persons with pollen allergy strengthens the evidence that pollen may cause systemic health effects and trigger cardiovascular events.


Assuntos
Pressão Sanguínea , Pólen , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Exposição Ambiental/efeitos adversos , Adulto Jovem , Rinite Alérgica Sazonal/etiologia , Rinite Alérgica Sazonal/epidemiologia , Alérgenos , Poluentes Atmosféricos/análise
3.
Allergy ; 77(12): 3606-3616, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35302662

RESUMO

BACKGROUND: Pollen exposure is associated with respiratory symptoms in children and adults. However, the association of pollen exposure with respiratory symptoms during infancy, a particularly vulnerable period, remains unclear. We examined whether pollen exposure is associated with respiratory symptoms in infants and whether maternal atopy, infant's sex or air pollution modifies this association. METHODS: We investigated 14,874 observations from 401 healthy infants of a prospective birth cohort. The association between pollen exposure and respiratory symptoms, assessed in weekly telephone interviews, was evaluated using generalized additive mixed models (GAMMs). Effect modification by maternal atopy, infant's sex, and air pollution (NO2 , PM2.5 ) was assessed with interaction terms. RESULTS: Per infant, 37 ± 2 (mean ± SD) respiratory symptom scores were assessed during the analysis period (January through September). Pollen exposure was associated with increased respiratory symptoms during the daytime (RR [95% CI] per 10% pollen/m3 : combined 1.006 [1.002, 1.009]; tree 1.005 [1.002, 1.008]; grass 1.009 [1.000, 1.23]) and nighttime (combined 1.003 [0.999, 1.007]; tree 1.003 [0.999, 1.007]; grass 1.014 [1.004, 1.024]). While there was no effect modification by maternal atopy and infant's sex, a complex crossover interaction between combined pollen and PM2.5 was found (p-value 0.003). CONCLUSION: Even as early as during the first year of life, pollen exposure was associated with an increased risk of respiratory symptoms, independent of maternal atopy and infant's sex. Because infancy is a particularly vulnerable period for lung development, the identified adverse effect of pollen exposure may be relevant for the evolvement of chronic childhood asthma.


Assuntos
Poluição do Ar , Asma , Lactente , Criança , Adulto , Humanos , Estudos Prospectivos , Pólen/efeitos adversos , Poluição do Ar/efeitos adversos , Asma/epidemiologia , Asma/etiologia , Asma/diagnóstico , Material Particulado
4.
Glob Chang Biol ; 26(4): 2599-2612, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31950538

RESUMO

A paper published in Global Change Biology in 2006 revealed that phenological responses in 1971-2000 matched the warming pattern in Europe, but a lack of chilling and adaptation in farming may have reversed these findings. Therefore, for 1951-2018 in a corresponding data set, we determined changes as linear trends and analysed their variation by plant traits/groups, across season and time as well as their attribution to warming following IPCC methodology. Although spring and summer phases in wild plants advanced less (maximum advances in 1978-2007), more (~90%) and more significant (~60%) negative trends were present, being stronger in early spring, at higher elevations, but smaller for nonwoody insect-pollinated species. These trends were strongly attributable to winter and spring warming. Findings for crop spring phases were similar, but were less pronounced. There were clearer and attributable signs for a delayed senescence in response to winter and spring warming. These changes resulted in a longer growing season, but a constant generative period in wild plants and a shortened one in agricultural crops. Phenology determined by farmers' decisions differed noticeably from the purely climatic driven phases with smaller percentages of advancing (~75%) trends, but farmers' spring activities were the only group with reinforced advancement, suggesting adaptation. Trends in farmers' spring and summer activities were very likely/likely associated with the warming pattern. In contrast, the advance in autumn farming phases was significantly associated with below average summer warming. Thus, under ongoing climate change with decreased chilling the advancing phenology in spring and summer is still attributable to warming; even the farmers' activities in these seasons mirror, to a lesser extent, the warming. Our findings point to adaptation to climate change in agriculture and reveal diverse implications for terrestrial ecosystems; the strong attribution supports the necessary mediation of warming impacts to the general public.

5.
Allergy ; 75(5): 1099-1106, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31721236

RESUMO

BACKGROUND: The effectiveness of allergen immunotherapy (AIT) in seasonal and perennial allergic rhinitis (AR) depends on the definition of pollen exposure intensity or time period. We recently evaluated pollen and symptom data from Germany to examine the new definitions of the European Academy of Allergy and Clinical Immunology (EAACI) on pollen season and peak pollen period start and end. Now, we aim to confirm the feasibility of these definitions to properly mirror symptom loads for grass and birch pollen-induced allergic rhinitis in other European geographical areas such as Austria, Finland and France, and therefore their suitability for AIT and clinical practice support. METHODS: Data from twenty-three pollen monitoring stations from three countries in Europe and for 3 years (2014-2016) were used to investigate the correlation between birch and grass pollen concentrations during the birch and grass pollen season defined via the EAACI criteria, and total nasal symptom and medication scores as reported with the aid of the patient's hay-fever diary (PHD). In addition, we conducted a statistical analysis, together with a graphical investigation, to reveal correlations and dependencies between the studied parameters. RESULTS: The analysis demonstrated that the definitions of pollen season as well as peak pollen period start and end as proposed by the EAACI are correlated to pollen-induced symptom loads reported by PHD users during birch and grass pollen season. A statistically significant correlation (slightly higher for birch) has been found between the Total Nasal Symptom and Medication Score (TNSMS) and the pollen concentration levels. Moreover, the maximum symptom levels occurred mostly within the peak pollen periods (PPP) following the EAACI criteria. CONCLUSIONS: Based on our analyses, we confirm the validity of the EAACI definitions on pollen season for both birch and grass and for a variety of geographical locations for the four European countries (including Germany from a previous publication) analyzed so far. On this basis, the use of the EAACI definitions is supported in future clinical trials on AIT as well as in daily routine for optimal patient care. Further evaluation of the EAACI criteria in other European regions is recommended.


Assuntos
Betula , Rinite Alérgica , Alérgenos , Áustria , Europa (Continente) , Finlândia , França , Alemanha/epidemiologia , Humanos , Poaceae , Pólen , Estações do Ano
6.
Int J Biometeorol ; 64(1): 71-81, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31478107

RESUMO

Phenological data have become increasingly important as indicators of long-term climate change. Consequently, long-term homogeneity of the records is an important aspect. In this paper, we apply a breakpoint detection algorithm to the phenological series from the Swiss Phenology Network (SPN). A combination of three statistical tests is applied and different constraints are tested with respect to the choice of reference series. Breakpoint detection is only possible for a fraction of the series due to the shortness of some series and the lack of suitable reference series. Spring phases are more likely to be suitable than fall phases because of their higher spatial correlation. Out of nearly 3000 phenological series with at least 20 data points, only about 5% were found to be significantly inhomogeneous, although a visual validation indicates that many mid-sized breakpoints remained undetected. The detected breakpoints were compared with metadata and more than half of them could be attributed to a change of observer.


Assuntos
Mudança Climática , Temperatura
8.
Glob Chang Biol ; 23(12): 5189-5202, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28586135

RESUMO

The spring phenology of plants in temperate regions strongly responds to spring temperatures. Climate warming has caused substantial phenological advances in the past, but trends to be expected in the future are uncertain. A simple indicator is temperature sensitivity, the phenological advance statistically associated with a 1°C warmer mean temperature during the "preseason", defined as the most temperature-sensitive period preceding the phenological event. Recent analyses of phenological records have shown a decline in temperature sensitivity of leaf unfolding, but underlying mechanisms were not clear. Here, we propose that climate warming can reduce temperature sensitivity simply by reducing the length of the preseason due to faster bud development during this time period, unless the entire preseason shifts forward so that its temperature does not change. We derive these predictions theoretically from the widely used "thermal time model" for bud development and test them using data for 19 phenological events recorded in 1970-2012 at 108 stations spanning a 1600 m altitudinal range in Switzerland. We consider how temperature sensitivity, preseason start, preseason length and preseason temperature change (i) with altitude, (ii) between the periods 1970-1987 and 1995-2012, which differed mainly in spring temperatures, and (iii) between two non-consecutive sets of 18 years that differed mainly in winter temperatures. On average, temperature sensitivity increased with altitude (colder climate) and was reduced in years with warmer springs, but not in years with warmer winters. These trends also varied among species. Decreasing temperature sensitivity in warmer springs was associated with a limited forward shift of preseason start, higher temperatures during the preseason and reduced preseason length, but not with reduced winter chilling. Our results imply that declining temperature sensitivity can result directly from spring warming and does not necessarily indicate altered physiological responses or stronger constraints such as reduced winter chilling.


Assuntos
Mudança Climática , Plantas , Estações do Ano , Temperatura , Altitude , Clima , Desenvolvimento Vegetal , Folhas de Planta/crescimento & desenvolvimento , Suíça
9.
Sci Total Environ ; 900: 165800, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37595925

RESUMO

We consider several approaches to a design of a regional-to-continent-scale automatic pollen monitoring network in Europe. Practical challenges related to the arrangement of such a network limit the range of possible solutions. A hierarchical network is discussed, highlighting the necessity of a few reference sites that follow an extended observations protocol and have corresponding capabilities. Several theoretically rigorous approaches to a network design have been developed so far. However, before starting the process, a network purpose, a criterion of its performance, and a concept of the data usage should be formalized. For atmospheric composition monitoring, developments follow one of the two concepts: a network for direct representation of concentration fields and a network for model-based data assimilation, inverse problem solution, and forecasting. The current paper demonstrates the first approach, whereas the inverse problems are considered in a follow-up paper. We discuss the approaches for the network design from theoretical and practical standpoints, formulate criteria for the network optimality, and consider practical constraints for an automatic pollen network. An application of the methodology is demonstrated for a prominent example of Germany's pollen monitoring network. The multi-step method includes (i) the network representativeness and (ii) redundancy evaluation followed by (iii) fidelity evaluation and improvement using synthetic data.

10.
Sci Total Environ ; 905: 167095, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37748607

RESUMO

Ongoing and future climate change driven expansion of aeroallergen-producing plant species comprise a major human health problem across Europe and elsewhere. There is an urgent need to produce accurate, temporally dynamic maps at the continental level, especially in the context of climate uncertainty. This study aimed to restore missing daily ragweed pollen data sets for Europe, to produce phenological maps of ragweed pollen, resulting in the most complete and detailed high-resolution ragweed pollen concentration maps to date. To achieve this, we have developed two statistical procedures, a Gaussian method (GM) and deep learning (DL) for restoring missing daily ragweed pollen data sets, based on the plant's reproductive and growth (phenological, pollen production and frost-related) characteristics. DL model performances were consistently better for estimating seasonal pollen integrals than those of the GM approach. These are the first published modelled maps using altitude correction and flowering phenology to recover missing pollen information. We created a web page (http://euragweedpollen.gmf.u-szeged.hu/), including daily ragweed pollen concentration data sets of the stations examined and their restored daily data, allowing one to upload newly measured or recovered daily data. Generation of these maps provides a means to track pollen impacts in the context of climatic shifts, identify geographical regions with high pollen exposure, determine areas of future vulnerability, apply spatially-explicit mitigation measures and prioritize management interventions.


Assuntos
Alérgenos , Ambrosia , Humanos , Europa (Continente) , Pólen
11.
Int J Biometeorol ; 56(6): 1113-21, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22395176

RESUMO

The aspiration efficiency of vertical and wind-oriented Air-O-Cell samplers was investigated in a field study using the pollen of hazel, sweet chestnut and birch. Collected pollen numbers were compared to measurements of a Hirst-type Burkard spore trap. The discrepancy between pollen counts is substantial in the case of vertical orientation. The results indicate a strong influence of wind velocity and inlet orientation relative to the freestream on the aspiration efficiency. Various studies reported on inertial effects on aerosol motion as function of wind velocity. The measurements were compared to a physically based model for the limited case of vertical blunt samplers. Additionally, a simple linear model based on pollen counts and wind velocity was developed. Both correction models notably reduce the error of vertically oriented samplers, whereas only the physically based model can be used on independent datasets. The study also addressed the precision error of the instruments used, which was substantial for both sampler types.


Assuntos
Monitoramento Ambiental/instrumentação , Modelos Teóricos , Pólen , Aerossóis , Betula , Corylus , Monitoramento Ambiental/métodos , Fagaceae , Vento
13.
Chimia (Aarau) ; 65(5): 323-5, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21744685

RESUMO

In preparation for picosecond pump-probe experiments at the SwissFEL X-ray laser facility, the feasibility of collectively initiating surface chemical reactions using energetic pulses of terahertz radiation is being tested.


Assuntos
Radiação Terahertz , Catálise , Lasers , Propriedades de Superfície , Fatores de Tempo , Espectroscopia por Absorção de Raios X
14.
Front Allergy ; 2: 677159, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35387022

RESUMO

Climate change and human impact on vegetation modify the timing and the intensity of the pollen season. The 50 years of pollen monitoring in Basel, Switzerland provide a unique opportunity to study long-term changes in pollen data. Since 1969, pollen monitoring has been carried out in Basel with a Hirst-type pollen trap. Pollen season parameters for start dates, end dates and duration were calculated with different pollen season definitions, which are commonly used in aerobiology. Intensity was analyzed by the annual pollen integral (APIn), peak value and the number of days above specific thresholds. Linear trends were calculated with the non-parametric Mann Kendall method with a Theil-Sen linear trend slope. During the last 50 years, linear increase of the monthly mean temperatures in Basel was 0.95-1.95°C in the 3 winter months, 2-3.7°C in spring months and 2.75-3.85°C in summer months. Due to this temperature increase, the start dates of the pollen season for most of the spring pollen species have advanced, from 7 days for Poaceae to 29 days for Taxus/Cupressaceae. End dates of the pollen season depend on the chosen pollen season definition. Negative trends predominate, i.e., the pollen season mostly ends earlier. Trends in the length of the pollen season depend even more on the season definitions and results are contradictory and often not significant. The intensity of the pollen season of almost all tree pollen taxa increased significantly, while the Poaceae pollen season did not change and the pollen season of herbs decreased, except for Urticaceae pollen. Climate change has a particular impact on the pollen season, but the definitions used for the pollen season parameters are crucial for the calculation of the trends. The most stable results were achieved with threshold definitions that indicate regular occurrence above certain concentrations. Percentage definitions are not recommended for trend studies when the annual pollen integral changed significantly.

15.
Sci Total Environ ; 781: 146382, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-33812098

RESUMO

Longitudinal shifts in pollen onset, duration, and intensity are public health concerns for the growing number of individuals with pollen sensitization. National analyses of long-term pollen changes are influenced by how a plant's main pollen season (MPS) is defined. Prior Swiss studies have inconsistently applied MPS definitions, leading to heterogeneous conclusions regarding the magnitude, directionality, and significance of multi-decade pollen trends. We examined national pollen data in Switzerland between 1990 and 2020, applying six MPS definitions (2 percentage-based and 4 threshold-based) to twelve relevant allergenic plants. We analyzed changes in pollen season using both linear regression and locally estimated scatterplot smoothing (LOESS). For 4 of the 12 plant species, there is unanimity between definitions regarding earlier onset of pollen season (p < 0.05), with magnitude of 31-year change dependent on specific MPS definition (hazel: 9-18 days; oak: 5-13 days; grasses: 8-25 days; and nettle/hemp: 6-25 days). There is also consensus (p < 0.05) for modified MPS duration among hazel (21-104% longer), nettle/hemp (8-52% longer), and ash (18-38% shorter). Between-definition agreement is highest for MPS intensity analysis, with consensus for significant increases in seasonal pollen quantity (p < 0.05) among hazel, birch, oak, beech, and nettle/hemp. The largest relative intensification is noted for hazel (110-146%) and beech (162-237%). LOESS analysis indicates that these multi-decade pollen changes are typically nonlinear. The robustness of MPS definitions is highly dependent on annual pollen accumulation, with definition choice particularly influential for long-term analysis of low-pollen plants such as ragweed. We identify systematic differences between MPS definitions and suggest future aerobiologic studies apply multiple definitions to minimize bias. In summary, national pollen onset, duration, and intensity have shifted for some plants in Switzerland, with MPS definition choice affecting magnitude and significance of these variations. Future public health research can determine whether these temporal and quantitative pollen changes correlate with longitudinal differences in population pollen sensitization.


Assuntos
Pólen , Saúde Pública , Alérgenos , Humanos , Estações do Ano , Suíça
16.
Sci Rep ; 10(1): 5334, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210278

RESUMO

Years with high fruit production, known as mast years, are the usual reproduction strategy of European beech. Harsh weather conditions such as frost during flowering can lead to pollination failure in spring. It has been assumed that mast is controlled by flowering, and that after successful pollination, high amounts of fruits and seeds would be produced. However, the extremely hot and dry European summer of 2018 showed that despite successful pollination, beechnuts did not develop or were only abundant in a few forest stands. An in-depth analysis of three forest sites of European beech from the Swiss Long-Term Forest Ecosystem Research Programme over the last 15-19 years revealed for the first time that extreme summer heat and drought can act as an "environmental veto", leading to early fruit abortion. Within the forest stands in years with fruit abortion, summer mean temperatures were 1.5 °C higher and precipitation sums were 45% lower than the long-term average. Extreme summer heat and drought, together with frost during flowering, are therefore disrupting events of the assumed biennial fruiting cycle in European beech.


Assuntos
Calor Extremo/efeitos adversos , Fagus/metabolismo , Frutas/crescimento & desenvolvimento , Mudança Climática , Secas , Ecossistema , Florestas , Frutas/metabolismo , Temperatura Alta/efeitos adversos , Polinização , Estações do Ano , Temperatura , Árvores , Tempo (Meteorologia)
17.
Lancet Planet Health ; 3(3): e124-e131, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30904111

RESUMO

BACKGROUND: Ongoing climate change might, through rising temperatures, alter allergenic pollen biology across the northern hemisphere. We aimed to analyse trends in pollen seasonality and pollen load and to establish whether there are specific climate-related links to any observed changes. METHODS: For this retrospective data analysis, we did an extensive search for global datasets with 20 years or more of airborne pollen data that consistently recorded pollen season indices (eg, duration and intensity). 17 locations across three continents with long-term (approximately 26 years on average) quantitative records of seasonal concentrations of multiple pollen (aeroallergen) taxa met the selection criteria. These datasets were analysed in the context of recent annual changes in maximum temperature (Tmax) and minimum temperature (Tmin) associated with anthropogenic climate change. Seasonal regressions (slopes) of variation in pollen load and pollen season duration over time were compared to Tmax, cumulative degree day Tmax, Tmin, cumulative degree day Tmin, and frost-free days among all 17 locations to ascertain significant correlations. FINDINGS: 12 (71%) of the 17 locations showed significant increases in seasonal cumulative pollen or annual pollen load. Similarly, 11 (65%) of the 17 locations showed a significant increase in pollen season duration over time, increasing, on average, 0·9 days per year. Across the northern hemisphere locations analysed, annual cumulative increases in Tmax over time were significantly associated with percentage increases in seasonal pollen load (r=0·52, p=0·034) as were annual cumulative increases in Tmin (r=0·61, p=0·010). Similar results were observed for pollen season duration, but only for cumulative degree days (higher than the freezing point [0°C or 32°F]) for Tmax (r=0·53, p=0·030) and Tmin (r=0·48, p=0·05). Additionally, temporal increases in frost-free days per year were significantly correlated with increases in both pollen load (r=0·62, p=0·008) and pollen season duration (r=0·68, p=0·003) when averaged for all 17 locations. INTERPRETATION: Our findings reveal that the ongoing increase in temperature extremes (Tmin and Tmax) might already be contributing to extended seasonal duration and increased pollen load for multiple aeroallergenic pollen taxa in diverse locations across the northern hemisphere. This study, done across multiple continents, highlights an important link between ongoing global warming and public health-one that could be exacerbated as temperatures continue to increase. FUNDING: None.


Assuntos
Alérgenos/análise , Aquecimento Global , Temperatura Alta , Pólen , Ásia , Europa (Continente) , América do Norte , Estudos Retrospectivos , Estações do Ano
18.
J Econ Entomol ; 111(1): 43-52, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29267963

RESUMO

The Asian chestnut gall wasp (ACGW; Dryocosmus kuriphilus Yasumatsu, Hymenoptera, Cynipidae) is considered as one of the most dangerous pests of the genus Castanea. In southern Switzerland, repeated heavy ACGW attacks prevented chestnut trees from vegetating normally for years before the arrival and spread of the biological control agent Torymus sinensis (Kamijo, Hymenoptera, Torymidae). This resulted in a greatly reduced green biomass and flower production. In this paper, we analyze the impact of such an ecosystem alteration of the environment on the composition of produced honey. Six beekeepers were chosen from sites with different densities of chestnut trees, each of which providing series of honey samples from 2010 to 2016. We determined the chestnut component in the honeys via a combined chemical and sensory approach, and correlated the obtained results with the degree of yearly ACGW-induced crown damage and weather conditions during the period in question in the surrounding chestnut stands. The chestnut component in the analyzed honey sample series showed a strong correlation with the degree of ACGW-induced crown damage, whereas meteorological conditions of the corresponding year had a very marginal effect. Decreases in the chestnut component of the honey were statistically significant starting from a ACGW infestation level of 30%.


Assuntos
Fagaceae/química , Mel/análise , Vespas/fisiologia , Animais , Criação de Abelhas , Tumores de Planta/etiologia , Suíça
19.
PLoS One ; 7(4): e34076, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22514618

RESUMO

A progressive global increase in the burden of allergic diseases has affected the industrialized world over the last half century and has been reported in the literature. The clinical evidence reveals a general increase in both incidence and prevalence of respiratory diseases, such as allergic rhinitis (common hay fever) and asthma. Such phenomena may be related not only to air pollution and changes in lifestyle, but also to an actual increase in airborne quantities of allergenic pollen. Experimental enhancements of carbon dioxide (CO[Formula: see text]) have demonstrated changes in pollen amount and allergenicity, but this has rarely been shown in the wider environment. The present analysis of a continental-scale pollen data set reveals an increasing trend in the yearly amount of airborne pollen for many taxa in Europe, which is more pronounced in urban than semi-rural/rural areas. Climate change may contribute to these changes, however increased temperatures do not appear to be a major influencing factor. Instead, we suggest the anthropogenic rise of atmospheric CO[Formula: see text] levels may be influential.


Assuntos
Pólen , Alérgenos/análise , Mudança Climática , Europa (Continente) , Geografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA