Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Sensors (Basel) ; 21(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071528

RESUMO

Consumption of food contaminated by Listeria monocytogenes can result in Listeriosis, an illness with hospitalization rates of 94% and mortality rates up to 30%. As a result, U.S. regulatory agencies governing food safety retain zero-tolerance policies for L. monocytogenes. However, detection at such low concentrations often requires strategies such as increasing sample size or culture enrichment. A novel flow-through immunoelectrochemical biosensor has been developed for Escherichia coli O157:H7 detection in 1 L volumes without enrichment. The current work further augments this biosensor's capabilities to (1) include detection of L. monocytogenes and (2) accommodate genetic detection to help overcome limitations based upon antibody availability and address specificity errors in phenotypic assays. Herein, the conjugation scheme for oligo attachment and the conditions necessary for genetic detection are laid forth while results of the present study demonstrate the sensor's ability to distinguish L. monocytogenes DNA from L. innocua with a limit of detection of ~2 × 104 cells/mL, which agrees with prior studies. Total time for this assay can be constrained to <2.5 h because a timely culture enrichment period is not necessary. Furthermore, the electrochemical detection assay can be performed with hand-held electronics, allowing this platform to be adopted for near-line monitoring systems.


Assuntos
Técnicas Biossensoriais , Escherichia coli O157 , Listeria monocytogenes , Listeria , Escherichia coli O157/genética , Microbiologia de Alimentos , Listeria monocytogenes/genética , Oligonucleotídeos
2.
BMC Bioinformatics ; 21(1): 20, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941435

RESUMO

BACKGROUND: Antibiotic resistance genes (ARGs) can spread among pathogens via horizontal gene transfer, resulting in imparities in their distribution even within the same species. Therefore, a pan-genome approach to analyzing resistomes is necessary for thoroughly characterizing patterns of ARGs distribution within particular pathogen populations. Software tools are readily available for either ARGs identification or pan-genome analysis, but few exist to combine the two functions. RESULTS: We developed Pan Resistome Analysis Pipeline (PRAP) for the rapid identification of antibiotic resistance genes from various formats of whole genome sequences based on the CARD or ResFinder databases. Detailed annotations were used to analyze pan-resistome features and characterize distributions of ARGs. The contribution of different alleles to antibiotic resistance was predicted by a random forest classifier. Results of analysis were presented in browsable files along with a variety of visualization options. We demonstrated the performance of PRAP by analyzing the genomes of 26 Salmonella enterica isolates from Shanghai, China. CONCLUSIONS: PRAP was effective for identifying ARGs and visualizing pan-resistome features, therefore facilitating pan-genomic investigation of ARGs. This tool has the ability to further excavate potential relationships between antibiotic resistance genes and their phenotypic traits.


Assuntos
Resistência Microbiana a Medicamentos/genética , Software , Alelos , China , Salmonella enterica/genética , Sequenciamento Completo do Genoma
3.
Anal Bioanal Chem ; 411(20): 5233-5242, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31127336

RESUMO

Foodborne illness is a common yet preventable public health concern generating significant costs for the healthcare system, making systems to accurately detect this pathogen a topic of current research. Enzyme-based immunoassays are highly desirable because they offer shorter response times compared to traditional culture-based methods. Biosensors employing the electrochemical and optical detection of a substrate oxidized by horseradish peroxidase (HRP) have been used to successfully detect biomolecules; however, their inability to handle large sample volumes severely limits their application to food safety despite their accuracy and reliability. Here, we describe a biosensor with the capacity to process a large sample volume by utilizing an Ag/AgCl reference electrode, a platinum counter electrode, and a porous working electrode made from graphite felt coated with antibodies specific for Salmonella common structural antigens. This design allows samples to flow-through the electrode while capturing target pathogens. Following sample exposure, HRP-conjugated antibodies facilitate pathogen detection that culminates in an oxidation reaction with the output analyzed via Osteryoung square wave voltammetry. Detection limits of 1000 Salmonella enterica serotype Typhimurium cells were achieved using this newly devised flow-through, enzyme-amplified, electrochemical biosensor in samples as large as 60 mL. The low cost of the sensor allows for incorporation into disposable detection devices while its design not only broadens its applicability in sample processing but also permits the detection of various microbes by simply exchanging the antibodies.


Assuntos
Anticorpos Antibacterianos/análise , Técnicas Biossensoriais , Técnicas Eletroquímicas/instrumentação , Eletrodos , Peroxidase do Rábano Silvestre/metabolismo , Salmonella typhimurium/isolamento & purificação , Limite de Detecção , Porosidade , Reprodutibilidade dos Testes , Salmonella typhimurium/imunologia
4.
Anal Bioanal Chem ; 410(22): 5439-5444, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29374775

RESUMO

DNA sequencing and other DNA-based methods are now broadly used for detection and identification of bacterial foodborne pathogens. For the identification of foodborne bacterial pathogens, taxonomic assignments must be made to the species or even subspecies level. Long-read DNA sequencing provides finer taxonomic resolution than short-read sequencing. Here, we demonstrate the potential of long-read shotgun sequencing obtained from the Oxford Nanopore Technologies (ONT) MinION single-molecule sequencer, in combination with the Basic Local Alignment Search Tool (BLAST) with custom sequence databases, for foodborne pathogen identification. A library of mixed DNA from strains of the "Super-7" Shiga toxin-producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, O145, and O157[:H7]) was sequenced using the ONT MinION resulting in 44,245 long-read sequences. The ONT MinION sequences were compared to a custom database composed of the E. coli O-antigen gene clusters. A vast majority of the sequence reads were from outside of the O-antigen cluster and did not align to any sequences in the O-antigen database. However, 58 sequences (0.13% of the total sequence reads) did align to a specific Super-7 O-antigen gene cluster, with each O-antigen cluster aligning to at least four sequence reads. BLAST analysis against a custom whole-genome database revealed that 5096 (11.5%) of the MinION sequence reads aligned to one and only one sequence in the database, of which 99.6% aligned to a sequence from a "Super-7" STEC. These results demonstrate the ability of the method to resolve STEC to the serogroup level and the potential general utility of the MinION for the detection and typing of foodborne pathogens.


Assuntos
DNA Bacteriano/genética , Infecções por Escherichia coli/microbiologia , Doenças Transmitidas por Alimentos/microbiologia , Análise de Sequência de DNA/métodos , Escherichia coli Shiga Toxigênica/genética , DNA Bacteriano/isolamento & purificação , Genômica/métodos , Humanos , Nanoporos/ultraestrutura , Sorogrupo , Sorotipagem/métodos , Escherichia coli Shiga Toxigênica/isolamento & purificação
5.
J Nanobiotechnology ; 14(1): 54, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27349516

RESUMO

BACKGROUND: Magnesium oxide nanoparticles (MgO nanoparticles, with average size of 20 nm) have considerable potential as antimicrobial agents in food safety applications due to their structure, surface properties, and stability. The aim of this work was to investigate the antibacterial effects and mechanism of action of MgO nanoparticles against several important foodborne pathogens. RESULTS: Resazurin (a redox sensitive dye) microplate assay was used for measuring growth inhibition of bacteria treated with MgO nanoparticles. The minimal inhibitory concentrations of MgO nanoparticles to 10(4) colony-forming unit/ml (CFU/ml) of Campylobacter jejuni, Escherichia coli O157:H7, and Salmonella Enteritidis were determined to be 0.5, 1 and 1 mg/ml, respectively. To completely inactivate 10(8-9) CFU/ml bacterial cells in 4 h, a minimal concentration of 2 mg/ml MgO nanoparticles was required for C. jejuni whereas E. coli O157:H7 and Salmonella Enteritidis required at least 8 mg/ml nanoparticles. Scanning electron microscopy examination revealed clear morphological changes and membrane structural damage in the cells treated with MgO nanoparticles. A quantitative real-time PCR combined with ethidium monoazide pretreatment confirmed cell membrane permeability was increased after exposure to the nanoparticles. In a cell free assay, a low level (1.1 µM) of H2O2 was detected in the nanoparticle suspensions. Consistently, MgO nanoparticles greatly induced the gene expression of KatA, a sole catalase in C. jejuni for breaking down H2O2 to H2O and O2. CONCLUSIONS: MgO nanoparticles have strong antibacterial activity against three important foodborne pathogens. The interaction of nanoparticles with bacterial cells causes cell membrane leakage, induces oxidative stress, and ultimately leads to cell death.


Assuntos
Antibacterianos/farmacologia , Campylobacter jejuni/efeitos dos fármacos , Escherichia coli O157/efeitos dos fármacos , Óxido de Magnésio/farmacologia , Nanopartículas/química , Salmonella enteritidis/efeitos dos fármacos , Antibacterianos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/crescimento & desenvolvimento , Campylobacter jejuni/ultraestrutura , Catalase/genética , Catalase/metabolismo , Contagem de Colônia Microbiana , Escherichia coli O157/crescimento & desenvolvimento , Escherichia coli O157/ultraestrutura , Contaminação de Alimentos , Microbiologia de Alimentos , Expressão Gênica , Peróxido de Hidrogênio/agonistas , Peróxido de Hidrogênio/metabolismo , Óxido de Magnésio/química , Testes de Sensibilidade Microbiana , Oxazinas/química , Estresse Oxidativo , Salmonella enteritidis/crescimento & desenvolvimento , Salmonella enteritidis/ultraestrutura , Xantenos/química
6.
Food Microbiol ; 47: 28-35, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25583335

RESUMO

Campylobacter jejuni and Campylobacter coli are the two important species responsible for most of the Campylobacter infections in humans. Reliable isolation and detection of Campylobacter spp. from food samples are challenging due to the interferences from complex food substances and the fastidious growth requirements of this organism. In this study, a novel biosensor-based detection called BARDOT (BActerial Rapid Detection using Optical scattering Technology) was developed for high-throughput screening of Campylobacter colonies grown on an agar plate without disrupting the intact colonies. Image pattern characterization and principal component analysis (PCA) of 6909 bacterial colonies showed that the light scatter patterns of C. jejuni and C. coli were strikingly different from those of Salmonella spp., Escherichia coli O157:H7, and Listeria monocytogenes. Examination of a mixed culture of these microorganisms revealed 85% (34/40) accuracy in differentiating Campylobacter from the other three major foodborne pathogens based on the similarity to the scatter patterns in an established library. The application of BARDOT in real food has been addressed through the analysis of Campylobacter spiked ground chicken and naturally contaminated fresh chicken pieces. Combined with real-time PCR verification, BARDOT was able to identify Campylobacter isolates from retail chicken. Moreover, applying passive filtration to food samples facilitated the isolation of pure Campylobacter colonies and therefore overcame the interference of the food matrix on BARDOT analysis.


Assuntos
Técnicas Bacteriológicas , Campylobacter coli/classificação , Campylobacter coli/isolamento & purificação , Campylobacter jejuni/classificação , Campylobacter jejuni/isolamento & purificação , Ensaios de Triagem em Larga Escala , Ágar , Animais , Técnicas Biossensoriais , Campylobacter jejuni/genética , Galinhas/microbiologia , DNA Bacteriano/análise , Escherichia coli O157/isolamento & purificação , Microbiologia de Alimentos , Lasers , Listeria monocytogenes/isolamento & purificação , Carne/microbiologia , Análise de Componente Principal , Reação em Cadeia da Polimerase em Tempo Real , Salmonella/isolamento & purificação , Espalhamento de Radiação
7.
Sensors (Basel) ; 15(12): 30429-42, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26690151

RESUMO

Antibody microarray is a powerful analytical technique because of its inherent ability to simultaneously discriminate and measure numerous analytes, therefore making the technique conducive to both the multiplexed detection and identification of bacterial analytes (i.e., whole cells, as well as associated metabolites and/or toxins). We developed a sandwich fluorescent immunoassay combined with a high-throughput, multiwell plate microarray detection format. Inexpensive polystyrene plates were employed containing passively adsorbed, array-printed capture antibodies. During sample reaction, centrifugation was the only strategy found to significantly improve capture, and hence detection, of bacteria (pathogenic Escherichia coli O157:H7) to planar capture surfaces containing printed antibodies. Whereas several other sample incubation techniques (e.g., static vs. agitation) had minimal effect. Immobilized bacteria were labeled with a red-orange-fluorescent dye (Alexa Fluor 555) conjugated antibody to allow for quantitative detection of the captured bacteria with a laser scanner. Shiga toxin 1 (Stx1) could be simultaneously detected along with the cells, but none of the agitation techniques employed during incubation improved detection of the relatively small biomolecule. Under optimal conditions, the assay had demonstrated limits of detection of ~5.8 × 105 cells/mL and 110 ng/mL for E. coli O157:H7 and Stx1, respectively, in a ~75 min total assay time.


Assuntos
Escherichia coli O157/isolamento & purificação , Imunoensaio/métodos , Análise em Microsséries/métodos , Toxina Shiga/análise , Centrifugação , Escherichia coli O157/imunologia , Ensaios de Triagem em Larga Escala , Toxina Shiga/imunologia
8.
BMC Microbiol ; 14: 326, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25551371

RESUMO

BACKGROUND: The disruption of the bacterial cell wall plays an important part in achieving quantitative extraction of DNA from Eubacteria essential for accurate analyses of genetic material recovered from environmental samples. RESULTS: In this work we have tested a dozen commercial bacterial genomic DNA extraction methodologies on an average of 7.70 × 10(6) (±9.05%), 4.77 × 10(8) (±31.0%), and 5.93 × 10(8) (±4.69%) colony forming units (CFU) associated with 3 cultures (n = 3) each of Brochothrix thermosphacta (Bt; Gram-positive), Shigella sonnei (Ss; Gram-negative), and Escherichia coli O79 (Ec; Gram-negative). We have utilized real-time PCR (qPCR) quantification with two specific sets of primers associated with the 16S rRNA "gene" to determine the number of copies CFU(-1) by comparing the unknown target DNA qPCR results with standards for each primer set. Based upon statistical analyses of our results, we determined that the Agencourt Genfind v2, High Pure PCR Template Prep Kit, and Omnilyse methods consistently provided the best yield of genomic DNA ranging from 141 to 934, 8 to 21, and 16 to 27 16S rDNA copies CFU(-1) for Bt, Ss, and Ec. If one assumes 6-7 copies of the 16S rRNA gene per genome, between 1 and 3 genomes per actively dividing cell and ≥ 100 cells CFU(-1) for Bt (found to be a reasonable assumption using an optical method expounded upon herein) or between 1 and 2 cells CFU(-1) for either Ss or Ec, then the Omnilyse procedure provided nearly quantitative extraction of genomic DNA from these isolates (934 ± 19.9 copies CFU(-1) for Bt; 20.8 ± 2.68 copies CFU(-1) for Ss; 26.9 ± 3.39 copies CFU(-1) for Ec). The Agencourt, High Pure, and Omnilyse technologies were subsequently assessed using 5 additional Gram-positive and 10 Gram-negative foodborne isolates (n = 3) using a set of "universal" 16S rDNA primers. CONCLUSION: Overall, the most notable DNA extraction method was found to be the Omnilyse procedure which is a "bead blender" technology involving high frequency agitation in the presence of zirconium silicate beads.


Assuntos
Brochothrix/genética , Brochothrix/isolamento & purificação , DNA Bacteriano/isolamento & purificação , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Shigella sonnei/genética , Shigella sonnei/isolamento & purificação , Técnicas Bacteriológicas/métodos , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Microbiologia de Alimentos/métodos , Biologia Molecular/métodos , RNA Ribossômico 16S/genética
9.
Foods ; 13(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38540819

RESUMO

Foodborne pathogens are a significant cause of illness, and infection with Shiga toxin-producing Escherichia coli (STEC) may lead to life-threatening complications. The current methods to identify STEC in meat involve culture-based, molecular, and proteomic assays and take at least four days to complete. This time could be reduced by using long-read whole-genome sequencing to identify foodborne pathogens. Therefore, the goal of this project was to evaluate the use of long-read sequencing to detect STEC in ground beef. The objectives of the project included establishing optimal sequencing parameters, determining the limit of detection of all STEC virulence genes of interest in pure cultures and spiked ground beef, and evaluating selective sequencing to enhance STEC detection in ground beef. Sequencing libraries were run on the Oxford Nanopore Technologies' MinION sequencer. Optimal sequencing output was obtained using the default parameters in MinKNOW, except for setting the minimum read length to 1 kb. All genes of interest (eae, stx1, stx2, fliC, wzx, wzy, and rrsC) were detected in DNA extracted from STEC pure cultures within 1 h of sequencing, and 30× coverage was obtained within 2 h. All virulence genes were confidently detected in STEC DNA quantities as low as 12.5 ng. In STEC-inoculated ground beef, software-controlled selective sequencing improved virulence gene detection; however, several virulence genes were not detected due to high bovine DNA concentrations in the samples. The growth enrichment of inoculated meat samples in mTSB resulted in a 100-fold increase in virulence gene detection as compared to the unenriched samples. The results of this project suggest that further development of long-read sequencing protocols may result in a faster, less labor-intensive method to detect STEC in ground beef.

10.
Microbiol Resour Announc ; 13(1): e0079223, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38099682

RESUMO

The whole-genome sequence of Escherichia coli strain DP033 is reported here. DP033 was isolated from a human rectal specimen in Tilburg, the Netherlands. In silico analysis showed that DP033 possessed 36 virulence-related genes and is a presumptive extraintestinal pathogenic E. coli and uropathogenic E. coli strain.

11.
Sensors (Basel) ; 13(5): 5737-48, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23645110

RESUMO

Many rapid methods have been developed for screening foods for the presence of pathogenic microorganisms. Rapid methods that have the additional ability to identify microorganisms via multiplexed immunological recognition have the potential for classification or typing of microbial contaminants thus facilitating epidemiological investigations that aim to identify outbreaks and trace back the contamination to its source. This manuscript introduces a novel, high throughput typing platform that employs microarrayed multiwell plate substrates and laser-induced fluorescence of the nucleic acid intercalating dye/stain SYBR Gold for detection of antibody-captured bacteria. The aim of this study was to use this platform for comparison of different sets of antibodies raised against the same pathogens as well as demonstrate its potential effectiveness for serotyping. To that end, two sets of antibodies raised against each of the "Big Six" non-O157 Shiga toxin-producing E. coli (STEC) as well as E. coli O157:H7 were array-printed into microtiter plates, and serial dilutions of the bacteria were added and subsequently detected. Though antibody specificity was not sufficient for the development of an STEC serotyping method, the STEC antibody sets performed reasonably well exhibiting that specificity increased at lower capture antibody concentrations or, conversely, at lower bacterial target concentrations. The favorable results indicated that with sufficiently selective and ideally concentrated sets of biorecognition elements (e.g., antibodies or aptamers), this high-throughput platform can be used to rapidly type microbial isolates derived from food samples within ca. 80 min of total assay time. It can also potentially be used to detect the pathogens from food enrichments and at least serve as a platform for testing antibodies.


Assuntos
Anticorpos Antibacterianos/metabolismo , Técnicas de Tipagem Bacteriana/métodos , Escherichia coli O157/classificação , Escherichia coli O157/imunologia , Ensaios de Triagem em Larga Escala/métodos , Análise em Microsséries/métodos , Contagem de Colônia Microbiana , Escherichia coli O157/crescimento & desenvolvimento , Fluorescência , Lasers
12.
Foods ; 13(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38201044

RESUMO

Shiga toxin-producing Escherichia coli (STEC) and Listeria monocytogenes are routinely responsible for severe foodborne illnesses in the United States. Current identification methods utilized by the U.S. Food Safety Inspection Service require at least four days to identify STEC and six days for L. monocytogenes. Adoption of long-read, whole genome sequencing for food safety testing could significantly reduce the time needed for identification, but method development costs are high. Therefore, the goal of this project was to use NanoSim-H software to simulate Oxford Nanopore sequencing reads to assess the feasibility of sequencing-based foodborne pathogen detection and guide experimental design. Sequencing reads were simulated for STEC, L. monocytogenes, and a 1:1 combination of STEC and Bos taurus genomes using NanoSim-H. At least 2500 simulated reads were needed to identify the seven genes of interest targeted in STEC, and at least 500 reads were needed to detect the gene targeted in L. monocytogenes. Genome coverage of 30x was estimated at 21,521, and 11,802 reads for STEC and L. monocytogenes, respectively. Approximately 5-6% of reads simulated from both bacteria did not align with their respective reference genomes due to the introduction of errors. For the STEC and B. taurus 1:1 genome mixture, all genes of interest were detected with 1,000,000 reads, but less than 1x coverage was obtained. The results suggested sample enrichment would be necessary to detect foodborne pathogens with long-read sequencing, but this would still decrease the time needed from current methods. Additionally, simulation data will be useful for reducing the time and expense associated with laboratory experimentation.

13.
Microbiol Resour Announc ; 12(1): e0094922, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36475878

RESUMO

Klebsiella pneumoniae is an important foodborne pathogen that can cause human infections. Here, we report the draft genomic sequence for K. pneumoniae 060517CS3-g, isolated from retail ground chicken meat, which has several antibiotic resistance genes, multiple plasmids, and genes that may result in its hypervirulence based on the sequence data.

14.
Microbiol Resour Announc ; 11(8): e0023722, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35862903

RESUMO

Campylobacter coli is an important foodborne pathogen that can cause inflammation of the intestine and diarrhea in humans. The complete genomes, including megaplasmids, of C. coli strains YH501, YH503, and YH504 from retail chicken were sequenced and de novo assembled. Whole-genome analysis revealed a number of virulence and antibiotic resistance genes, suggesting significant potential for these poultry-originating isolates to cause human disease.

15.
Antibiotics (Basel) ; 11(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35203727

RESUMO

Comparative transcriptome analysis and de novo short-read assembly of S. aureus Newman strains revealed significant transcriptional changes in response to the exposure to triple-acting staphylolytic peptidoglycan hydrolase (PGH) 1801. Most altered transcriptions were associated with the membrane, cell wall, and related genes, including amidase, peptidase, holin, and phospholipase D/transphosphatidylase. The differential expression of genes obtained from RNA-seq was confirmed by reverse transcription quantitative PCR. Moreover, some of these gene expression changes were consistent with the observed structural perturbations at the DNA and RNA levels. These structural changes in the genes encoding membrane/cell surface proteins and altered gene expressions are the candidates for resistance to these novel antimicrobials. The findings in this study could provide insight into the design of new antimicrobial agents.

16.
Foods ; 11(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36429244

RESUMO

The USDA-FSIS has zero tolerance for E. coli O157:H7 in raw ground beef. Currently, FSIS collects samples from beef processing facilities and ships them overnight to regional testing laboratories. Pathogen detection requires robust methods that employ an initial 15-24 h culture enrichment. This study assessed the potential of using the ΦV10nluc phage-based luminescence detection assay during enrichment while the sample is in transit. Parameters including phage concentrations, temperature, and media-to-sample ratios were evaluated. Results in liquid media showed that 1.73× 103 pfu/mL of ΦV10nluc was able to detect 2 CFU in 10 h. The detection of E. coli O157:H7 was further evaluated in kinetic studies using ratios of 1:3, 1:2, and 1:1 ground beef sample to enrichment media, yielding positive results for as little as 2-3 CFU in 325 g ground beef in about 15 h at 37 °C. These results suggest that this approach is feasible, allowing the detection of a presumptive positive upon arrival of the sample to the testing lab. As the current cargo hold controlled temperature is required to be 15-25 °C, the need for elevated temperature should be easily addressed. If successful, this approach could be expanded to other pathogens and foods.

17.
Microbiol Resour Announc ; 10(8)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33632865

RESUMO

Escherichia coli strain FEX669 was isolated from retail ground chicken and shown to contain the extraintestinal pathogenic E. coli (ExPEC) virulence genes sfaD, focC, and iutA Because this presumptive ExPEC strain was isolated from a retail food item and it was a weak biofilm former, it was characterized using whole-genome sequencing using the PacBio RS II platform. Genomic analysis showed that the FEX669 chromosome is 4,973,943 bp long, with a GC content of 50.47%, and is accompanied by a ColV plasmid that is 237,102 bp long, with a GC content of 50.49%.

18.
Front Microbiol ; 12: 641801, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679677

RESUMO

Isolation of the pathogens Yersinia enterocolitica and Yersinia pseudotuberculosis from foods typically rely on slow (10-21 day) "cold enrichment" protocols before confirmed results are obtained. We describe an approach that yields results in 39 h that combines an alternative enrichment method with culture on a non-selective medium, and subsequent identification of suspect colonies using elastic light scatter (ELS) analysis. A prototype database of ELS profiles from five Yersinia species and six other bacterial genera found in pork mince was established, and used to compare similar profiles of colonies obtained from enrichment cultures from pork mince samples seeded with representative strains of Y. enterocolitica and Y. pseudotuberculosis. The presumptive identification by ELS using computerised or visual analyses of 83/90 colonies in these experiments as the target species was confirmed by partial 16S rDNA sequencing. In addition to seeded cultures, our method recovered two naturally occurring Yersinia strains. Our results indicate that modified enrichment combined with ELS is a promising new approach for expedited detection of foodborne pathogenic yersiniae.

19.
Mol Cell Probes ; 24(2): 77-86, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19833198

RESUMO

Escherichia coli O157:H7, Salmonella enterica, Listeria monocytogenes and Campylobacter jejuni are considered important pathogens causing the most food-related human illnesses worldwide. Current methods for pathogen detection have limitations in the effectiveness of identifying multiple foodborne pathogens. In this study, a pathogen detection microarray was developed using various 70-mer oligonucleotides specifically targeting the above pathogens. To reduce the cost of detection, each microarray chip was designed and fabricated to accommodate 12 identical arrays which could be used for screening up to 12 different samples. To achieve high detection sensitivity and specificity, target-specific DNA amplification instead of whole genome random amplification was used prior to microarray analysis. Combined with 14-plex PCR amplification of target sequences, the microarray unambiguously distinguished all 4 pathogens with a detection sensitivity of 1 x 10(-4) ng (approximately 20 copies) of each genomic DNA. Applied the assay to 39 fresh meat samples, 16 samples were found to be contaminated by either 1 or 2 of these pathogens. The co-occurrences of Salmonella and E. coli O157:H7, Salmonella and L. monocytogenes in the same meat samples were also observed. Overall, the microarray combined with multiplex PCR method was able to effectively screen single or multiple pathogens in food samples and to provide important genotypic information related to pathogen virulence.


Assuntos
Bactérias/isolamento & purificação , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Bactérias/genética , Carne/microbiologia , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade
20.
J Nanobiotechnology ; 8: 34, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21176159

RESUMO

BACKGROUND: We have evaluated the antimicrobial properties of Ag-based nanoparticles (Nps) using two solid phase bioassays and found that 10-20 µL of 0.3-3 µM keratin-stabilized Nps (depending on the starting bacterial concentration = CI) completely inhibited the growth of an equivalent volume of ca. 103 to 104 colony forming units per mL (CFU mL-1) Staphylococcus aureus, Salmonella Typhimurium, or Escherichia coli O157:H7 on solid surfaces. Even after one week at 37°C on solid media, no growth was observed. At lower Np concentrations (= [Np]s), visible colonies were observed but they eventually ceased growing. RESULTS: To further study the physiology of this growth inhibition, we repeated these experiments in liquid phase by observing microbial growth via optical density at 590 nm (OD) at 37°C in the presence of a [Np] = 0 to 10-6 M. To extract various growth parameters we fit all OD[t] data to a common sigmoidal function which provides measures of the beginning and final OD values, a first-order rate constant (k), as well as the time to calculated 1/2-maximal OD (tm) which is a function of CI, k, as well as the microbiological lag time (T).Performing such experiments using a 96-well microtitre plate reader, we found that growth always occurred in solution but tm varied between 7 (controls; CI = 8 × 103 CFU mL-1) and > 20 hrs using either the citrate-([Np] ~ 3 × 10-7 M) or keratin-based ([Np] ~ 10-6 M) Nps and observed that {∂tm/∂ [Np]}citrate ~ 5 × 107 and {∂tm/∂ [Np]}keratin ~ 107 hr·L mol-1. We also found that there was little effect of Nps on S. aureus growth rates which varied only between k = 1.0 and 1.2 hr-1 (1.1 ± 0.075 hr-1). To test the idea that the Nps were changing the initial concentration (CI) of bacteria (i.e., cell death), we performed probabilistic calculations assuming that the perturbations in tm were due to CI alone. We found that such large perturbations in tm could only come about at a CI where the probability of any growth at all was small. This result indicates that much of the Np-induced change in tm was due to a greatly increased T (e.g., from ca. 1 to 15-20 hrs). For the solid phase assays we hypothesize that the bacteria eventually became non-culturable since they were inhibited from undergoing further cell division (T > many days). CONCLUSION: We propose that the difference between the solid and liquid system relates to the obvious difference in the exposure, or residence, time of the Nps with respect to the bacterial cell membrane inasmuch as when small, Np-inhibited colonies were selected and streaked on fresh (i.e., no Nps present) media, growth proceeded normally: e.g., a small, growth-inhibited colony resulted in a plateful of typical S. aureus colonies when streaked on fresh, solid media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA