Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(47): 11905-11910, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30401737

RESUMO

Hybrid organic-inorganic perovskites (HOIPs) have become an important class of semiconductors for solar cells and other optoelectronic applications. Electron-phonon coupling plays a critical role in all optoelectronic devices, and although the lattice dynamics and phonon frequencies of HOIPs have been well studied, little attention has been given to phonon lifetimes. We report high-precision momentum-resolved measurements of acoustic phonon lifetimes in the hybrid perovskite methylammonium lead iodide (MAPI), using inelastic neutron spectroscopy to provide high-energy resolution and fully deuterated single crystals to reduce incoherent scattering from hydrogen. Our measurements reveal extremely short lifetimes on the order of picoseconds, corresponding to nanometer mean free paths and demonstrating that acoustic phonons are unable to dissipate heat efficiently. Lattice-dynamics calculations using ab initio third-order perturbation theory indicate that the short lifetimes stem from strong three-phonon interactions and a high density of low-energy optical phonon modes related to the degrees of freedom of the organic cation. Such short lifetimes have significant implications for electron-phonon coupling in MAPI and other HOIPs, with direct impacts on optoelectronic devices both in the cooling of hot carriers and in the transport and recombination of band edge carriers. These findings illustrate a fundamental difference between HOIPs and conventional photovoltaic semiconductors and demonstrate the importance of understanding lattice dynamics in the effort to develop metal halide perovskite optoelectronic devices.

2.
Proc Natl Acad Sci U S A ; 111(5): 1754-9, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24449912

RESUMO

PbZr(1-x)Ti(x)O3 (PZT) and Pb(Mg1/3Nb2/3)(1-x)Ti(x)O3 (PMN-xPT) are complex lead-oxide perovskites that display exceptional piezoelectric properties for pseudorhombohedral compositions near a tetragonal phase boundary. In PZT these compositions are ferroelectrics, but in PMN-xPT they are relaxors because the dielectric permittivity is frequency dependent and exhibits non-Arrhenius behavior. We show that the nanoscale structure unique to PMN-xPT and other lead-oxide perovskite relaxors is absent in PZT and correlates with a greater than 100% enhancement of the longitudinal piezoelectric coefficient in PMN-xPT relative to that in PZT. By comparing dielectric, structural, lattice dynamical, and piezoelectric measurements on PZT and PMN-xPT, two nearly identical compounds that represent weak and strong random electric field limits, we show that quenched (static) random fields establish the relaxor phase and identify the order parameter.

3.
Phys Rev B ; 100(2)2019.
Artigo em Inglês | MEDLINE | ID: mdl-38617196

RESUMO

Short-range polar order in the relaxor ferroelectric material PbMg1/3Nb2/3O3-28%PbTiO3 (PMN-28PT) have been studied using neutron diffuse scattering. An external electric field along the [110] direction can affect the diffuse scattering in the low temperature rhombohedral/monoclinic phase. Diffuse scattering intensities associated with [110] short-range polarizations are partially suppressed, while those arising from [11¯0] polarizations are enhanced. On the other hand, short-range polar order along other equivalent 〈110〉 directions, i.e., [101], [101¯], [011], and [011¯] directions, are virtually unaffected by the field. Our results, combined with previous work, strongly suggest that most parts of short-range polar order in PMN-xPT relaxor systems are robust in the low temperature phase, where they couple strongly to ferroelectric polarizations of the surrounding ferroelectric domains, and would only respond to an external field indirectly through ferroelectric domain rotation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA