Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 21(5): 1004-17, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22076441

RESUMO

Periventricular nodular heterotopia (PH) is a human brain malformation caused by defective neuronal migration that results in ectopic neuronal nodules lining the lateral ventricles beneath a normal appearing cortex. Most affected patients have seizures and their cognitive level varies from normal to severely impaired. Mutations in the Filamin-A (or FLNA) gene are the main cause of PH, but the underlying pathological mechanism remains unknown. Although two FlnA knockout mouse strains have been generated, none of them showed the presence of ectopic nodules. To recapitulate the loss of FlnA function in the developing rat brain, we used an in utero RNA interference-mediated knockdown approach and successfully reproduced a PH phenotype in rats comparable with that observed in human patients. In FlnA-knockdown rats, we report that PH results from a disruption of the polarized radial glial scaffold in the ventricular zone altering progression of neural progenitors through the cell cycle and impairing migration of neurons into the cortical plate. Similar alterations of radial glia are observed in human PH brains of a 35-week fetus and a 3-month-old child, harboring distinct FLNA mutations not previously reported. Finally, juvenile FlnA-knockdown rats are highly susceptible to seizures, confirming the reliability of this novel animal model of PH. Our findings suggest that the disorganization of radial glia is the leading cause of PH pathogenesis associated with FLNA mutations. Rattus norvegicus FlnA mRNA (GenBank accession number FJ416060).


Assuntos
Córtex Cerebral/metabolismo , Proteínas Contráteis/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neuroglia/fisiologia , Heterotopia Nodular Periventricular/metabolismo , Heterotopia Nodular Periventricular/patologia , Animais , Movimento Celular , Proliferação de Células , Córtex Cerebral/embriologia , Córtex Cerebral/patologia , Ventrículos Cerebrais/patologia , Proteínas Contráteis/genética , Modelos Animais de Doenças , Feminino , Filaminas , Humanos , Lactente , Proteínas dos Microfilamentos/genética , Dados de Sequência Molecular , Neocórtex/embriologia , Neocórtex/metabolismo , Neocórtex/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Neuroglia/metabolismo , Neuroglia/ultraestrutura , Neurônios/fisiologia , Interferência de RNA , Ratos , Convulsões/etiologia
2.
Front Neurosci ; 14: 899, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973442

RESUMO

Tuberous sclerosis (TSC) is a multisystem autosomal dominant genetic disorder due to loss of function of TSC1/TSC2 resulting in increased mTOR (mammalian target of rapamycin) signaling. In the brain, TSC is characterized by the formation of specific lesions that include subependymal and white matter nodules and cortical tubers. Cells that constitute TSC lesions are mainly Giant cells and dysmorphic neurons and astrocytes, but normal cells also populate the tubers. Although considered as a developmental disorder, the histopathological features of brain lesions have been described in only a limited number of fetal cases, providing little information on how these lesions develop. In this report we characterized the development of TSC lesions in 14 fetal brains ranging from 19 gestational weeks (GW) to term and 2 postnatal cases. The study focused on the telencephalon at the level of the caudothalamic notch. Our data indicate that subcortical lesions, forming within and at the vicinity of germinative zones, are the first alterations (already detected in 19GW brains), characterized by the presence of numerous dysmorphic astrocytes and Giant, balloon-like, cells. Our data show that cortical tuber formation is a long process that initiates with the presence of dysmorphic astrocytes (by 19-21GW), progress with the apparition of Giant cells (by 24GW) and mature with the appearance of dysmorphic neurons by the end of gestation (by 36GW). Furthermore, the typical tuberal aspect of cortical lesions is only reached when bundles of neurofilament positive extensions delineate the bottom of the cortical lesion (by 36GW). In addition, our study reveals the presence of Giant cells and dysmorphic neurons immunopositive for interneuron markers such as calbindin and parvalbumin, suggesting that TSC lesions would be mosaic lesions generated from different classes of progenitors.

3.
Neurol Genet ; 6(6): e534, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33659639

RESUMO

OBJECTIVE: To report the identification of 2 new homozygous recessive mutations in the synaptotagmin 2 (SYT2) gene as the genetic cause of severe and early presynaptic forms of congenital myasthenic syndromes (CMSs). METHODS: Next-generation sequencing identified new homozygous intronic and frameshift mutations in the SYT2 gene as a likely cause of presynaptic CMS. We describe the clinical and electromyographic patient phenotypes, perform ex vivo splicing analyses to characterize the effect of the intronic mutation on exon splicing, and analyze the functional impact of this variation at the neuromuscular junction (NMJ). RESULTS: The 2 infants presented a similar clinical phenotype evoking first a congenital myopathy characterized by muscle weakness and hypotonia. Next-generation sequencing allowed to the identification of 1 homozygous intronic mutation c.465+1G>A in patient 1 and another homozygous frameshift mutation c.328_331dup in patient 2, located respectively in the 5' splice donor site of SYT2 intron 4 and in exon 3. Functional studies of the intronic mutation validated the abolition of the splice donor site of exon 4 leading to its skipping. In-frame skipping of exon 4 that encodes part of the C2A calcium-binding domain of SYT2 is associated with a loss-of-function effect resulting in a decrease of neurotransmitter release and severe pre- and postsynaptic NMJ defects. CONCLUSIONS: This study identifies new homozygous recessive SYT2 mutations as the underlying cause of severe and early presynaptic form of CMS expanding the genetic spectrum of recessive SYT2-related CMS associated with defects in neurotransmitter release.

5.
Nat Genet ; 47(5): 528-34, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25848753

RESUMO

Pediatric-onset ataxias often present clinically as developmental delay and intellectual disability, with prominent cerebellar atrophy as a key neuroradiographic finding. Here we describe a new clinically distinguishable recessive syndrome in 12 families with cerebellar atrophy together with ataxia, coarsened facial features and intellectual disability, due to truncating mutations in the sorting nexin gene SNX14, encoding a ubiquitously expressed modular PX domain-containing sorting factor. We found SNX14 localized to lysosomes and associated with phosphatidylinositol (3,5)-bisphosphate, a key component of late endosomes/lysosomes. Patient-derived cells showed engorged lysosomes and a slower autophagosome clearance rate upon autophagy induction by starvation. Zebrafish morphants for snx14 showed dramatic loss of cerebellar parenchyma, accumulation of autophagosomes and activation of apoptosis. Our results characterize a unique ataxia syndrome due to biallelic SNX14 mutations leading to lysosome-autophagosome dysfunction.


Assuntos
Doenças Cerebelares/genética , Cerebelo/patologia , Lisossomos/metabolismo , Fagossomos/metabolismo , Nexinas de Classificação/genética , Ataxias Espinocerebelares/genética , Animais , Atrofia/genética , Autofagia , Pré-Escolar , Feminino , Frequência do Gene , Humanos , Lactente , Escore Lod , Doenças por Armazenamento dos Lisossomos/genética , Masculino , Mutação , Síndrome , Peixe-Zebra
6.
Soins ; (761): 53-4, 2011 Dec.
Artigo em Francês | MEDLINE | ID: mdl-22312688

RESUMO

The mortuary is a place where past, present and future converge. It is a place where families can prepare and find peace. Every day, mortuary staff offer humanity and care to the families and loved ones of the deceased, to help them continue to build their own lives.


Assuntos
Práticas Mortuárias , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA