RESUMO
Currently, severe membrane fouling and inefficient nitrogen removal were two main issues that hindered the sustainable operation and further application of membrane bioreactor (MBR). This study aimed to simultaneously alleviate membrane fouling and improve nitrogen removal by applying high sludge concentration in MBR. Results showed that high sludge concentration (12000 mg/L) enhanced total nitrogen removal efficiency (78 %) and reduced transmembrane pressure development rate. Microbial community analysis revealed that high sludge concentration enriched functional bacteria associated with nitrogen removal, increased filamentous bacteria fraction in bio-cake and inhibited Thiothrix overgrowth in bulk sludge. From molecular level, the key genes involved in nitrogen metabolism, electron donor/adenosine triphosphate production and amino acid degradation were up-regulated under high sludge concentration. Overall, high sludge concentration improved microbial assembly and functional gene abundance, which not only enhanced nitrogen removal but also alleviated membrane fouling. This study provided an effective strategy for sustainable operation of MBR.
Assuntos
Incrustação Biológica , Esgotos , Esgotos/microbiologia , Nitrificação , Incrustação Biológica/prevenção & controle , Desnitrificação , Metagenoma , Reatores Biológicos/microbiologia , Nitrogênio , Membranas ArtificiaisRESUMO
Strengthening the direct interspecies electron transfer (DIET) is an effective strategy to improve the performance of anaerobic digestion (AD) process. In this study, the polyaniline functionated activated carbon (AC-PANi) was prepared by chemical oxidative polymerization. This material possessed pseudo-capacitance properties as well as excellent charge transfer capability. The experimental results demonstrated that the incorporation of AC-PANi in AD process could efficiently increase the chemical oxygen demand (COD) removal (18.6 %) and daily methane production rate (35.3 %). The AC-PANi can also act as an extracellular acceptor to promote the synthesis of adenosine triphosphate (ATP) and secretion of extracellular enzymes as well as cytochrome C (Cyt-C). The content of coenzyme F420 on methanogens was also shown to be increased by 60.9 % with the addition of AC-PANi in AD reactor. Overall, this work provides an easy but feasible way to enhance AD performance by promoting DIET between acetate-producing bacteria and methanogens.
Assuntos
Compostos de Anilina , Carvão Vegetal , Metano , Anaerobiose , Transporte de Elétrons , Metano/metabolismo , Carvão Vegetal/química , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Trifosfato de Adenosina/metabolismoRESUMO
The effects of fungal pellets (FPs) dosage on both structural and functional stability of aerobic granular sludge (AGS) were investigated during 200-day operation. Results showed that the AGS induced by low (a dry mass ratio of FPs to seed sludge, 30%) and high FPs dosage (60%) exhibited good morphology integrity during the entire phase of operation, while the filamentous overgrowth and AGS breakup were observed in the control reactor (0% FPs). Moreover, the granules developed at high FPs dosage demonstrated excellent nutrients removal (COD: 93%; NH4+-N: 100%; TN: 77%) and stable bioactivity with a maximum specific oxygen uptake rate (SOUR) of 52.6 ± 2.6 mg O2/(gVSS·h), a value being 12.2% and 26.7% higher than that of 30% and 0% dosage. The microbial community analysis revealed 60% FPs dosage enriched various functional bacteria involved in nutrients removal. This study suggests a sustainable strategy for improving structural and functional stability of AGS.
Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Aerobiose , Bactérias , Reatores Biológicos , NitrogênioRESUMO
In this study, porous spherical carriers were fixed around the hollow fiber membrane module to mitigate membrane biofouling. Two MBRs (R1 without carriers, R2 with carriers) were operated for 31 days under identical operating conditions to investigate the effects of the carriers on the reactor performances, the production of extracellular polymeric substances (EPS), the level of N-acyl-homoserine lactones (AHLs), and the microbial communities. The results showed that the presence of carriers in MBR was conducive to nitrogen removal and decreased the total membrane filtration resistance by about 1.7 times. Slower transmembrane pressure (TMP) rise-up, thinner bio-cakes, lower EPS production, and fewer tryptophan and aromatic proteins substances on the membrane surface were observed in R2. The polysaccharides secretion of EPS in bio-cakes was mainly regulated by C4-HSL and 3OC6-HSL in the presence of carriers. The microbial community analysis revealed that carriers addition reduced the relative abundance of EPS and AHL producing bacteria in the membrane bio-cakes and enriched the accumulation of functional bacteria conducive to nutrient removal in the mixed liquor. This study provided an in-depth understanding for the application of porous spherical carriers to alleviate membrane biofouling.