Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(4): 2378-2389, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38471518

RESUMO

We prepared a small library of short peptidomimetics based on 3-pyrrolo-pyrazole carboxylate, a non-coded γ-amino acid, and glycine or alanine. The robust and eco-friendly synthetic approach adopted allows to obtain the dipeptides in two steps from commercial starting materials. This gives the possibility to shape these materials by electrospinning into micro- and nanofibers, in amounts required to be useful for coating surfaces of biomedical relevance. To promote high quality of electrospun fibers, different substitution patterns were evaluated, all for pure peptide fibers, free of any polymer or additive. The best candidate, which affords a homogeneous fibrous matrix, was prepared in larger amounts, and its biocompatibility was verified. This successful work is the first step to develop a new biomaterial able to produce pristine peptide-based nanofibers to be used as helpful component or stand-alone scaffolds for tissue engineering or for the surface modification of medical devices.


Assuntos
Nanofibras , Peptidomiméticos , Alicerces Teciduais/química , Nanofibras/química , Engenharia Tecidual , Peptídeos
2.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569489

RESUMO

Vascular graft infections are a severe complication in vascular surgery, with a high morbidity and mortality. Prevention and treatment involve the use of antibiotic- or antiseptic-impregnated artificial vascular grafts, but currently, there are no commercially available infection-proof small-diameter vascular grafts (SDVGs). In this work we investigated the antimicrobic activity of two SDVGs prototypes loaded with tobramycin and produced via the electrospinning of drug-doped PLGA (polylactide-co-glycolide) solutions. Differences in rheological and conductivity properties of the polymer solutions resulted in non-identical fibre morphology that deeply influenced the hydration profile and consequently the in vitro cumulative drug release, which was investigated by using a spectrofluorimetric technique. Using DDSolver Excel add-in, modelling of the drug release kinetic was performed to evaluate the release mechanism involved: Prototype 1 showed a sustained and diffusive driven drug release, which allowed for the complete elution of tobramycin within 2 weeks, whereas Prototype 2 resulted in a more extended drug release controlled by both diffusion and matrix relaxation. Time-kill assays performed on S. aureus and E. coli highlighted the influence of burst drug release on the decay rate of bacterial populations, with Prototype 1 being more efficient on both microorganisms. Nevertheless, both prototypes showed good antimicrobic activity over the 5 days of in vitro testing.

3.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686348

RESUMO

In this work, four different active encapsulation methods, microfluidic (MF), sonication (SC), freeze-thawing (FT), and electroporation (EP), were investigated to load a model protein (bovine serum albumin-BSA) into neutral liposomes made from 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC):cholesterol (Chol) and charged liposomes made from DSPC:Chol:Dioleoyl-3-trimethylammonium propane (DOTAP), DSPC:Chol:1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS), and DSPC:Chol:phosphatidylethanolamine (PE). The aim was to increase the protein encapsulation efficiency (EE%) by keeping the liposome size below 200 nm and the PDI value below 0.7, which warrants a nearly monodisperse preparation. Electroporation (100 V) yielded the best results in terms of EE%, with a dramatic increase in liposome size (>600 nm). The FT active-loading method, either applied to neutral or charged liposomes, allowed for obtaining suitable EE%, keeping the liposome size range below 200 nm with a suitable PDI index. Cationic liposomes (DSPC:Chol:DOTAP) loaded with the FT active method showed the best results in terms of EE% (7.2 ± 0.8%) and size (131.2 ± 11.4 nm, 0.140 PDI). In vitro release of BSA from AM neutral and charged liposomes resulted slower compared to PM liposomes and was affected by incubation temperature (37 °C, 4 °C). The empty charged liposomes tested for cell viability on Human Normal Dermal Fibroblast (HNDF) confirmed their cytocompatibility also at high concentrations (1010 particles/mL) and cellular uptake at 4 °C and 37 °C. It can be concluded that even if both microfluidic passive and active methods are more easily transferable to an industrial scale, the FT active-loading method turned out to be the best in terms of BSA encapsulation efficiencies, keeping liposome size below 200 nm.


Assuntos
Lipossomos , Soroalbumina Bovina , Humanos , Eletroporação , Terapia com Eletroporação
4.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163218

RESUMO

Shape-Memory Polymers (SMPs) are considered a kind of smart material able to modify size, shape, stiffness and strain in response to different external (heat, electric and magnetic field, water or light) stimuli including the physiologic ones such as pH, body temperature and ions concentration. The ability of SMPs is to memorize their original shape before triggered exposure and after deformation, in the absence of the stimulus, and to recover their original shape without any help. SMPs nanofibers (SMPNs) have been increasingly investigated for biomedical applications due to nanofiber's favorable properties such as high surface area per volume unit, high porosity, small diameter, low density, desirable fiber orientation and nanoarchitecture mimicking native Extra Cellular Matrix (ECM). This review focuses on the main properties of SMPs, their classification and shape-memory effects. Moreover, advantages in the use of SMPNs and different biomedical application fields are reported and discussed.


Assuntos
Nanofibras/uso terapêutico , Polímeros/farmacologia , Materiais Inteligentes/química , Animais , Materiais Biocompatíveis/química , Engenharia Biomédica/métodos , Engenharia Biomédica/tendências , Humanos , Nanofibras/química , Polímeros/química , Polímeros/uso terapêutico , Materiais Inteligentes/farmacologia , Materiais Inteligentes/uso terapêutico , Alicerces Teciduais/química
5.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430555

RESUMO

Nowadays, antimicrobial resistance (AMR) represents a challenge for antibiotic therapy, mostly involving Gram-negative bacteria. Among the strategies activated to overcome AMR, the repurposing of already available antimicrobial molecules by encapsulating them in drug delivery systems, such as nanoparticles (NPs) and also engineered NPs, seems to be promising. Tobramycin is a powerful and effective aminoglycoside, approved for complicated infections and reinfections and indicated mainly against Gram-negative bacteria, such as Pseudomonas aeruginosa, Escherichia coli, Proteus, Klebsiella, Enterobacter, Serratia, Providencia, and Citrobacter species. However, the drug presents several side effects, mostly due to dose frequency, and for this reason, it is a good candidate for nanomedicine formulation. This review paper is focused on what has been conducted in the last 20 years for the development of Tobramycin nanosized delivery systems (nanoantibiotics), with critical discussion and comparison. Tobramycin was selected as the antimicrobial drug because it is a wide-spectrum antibiotic that is effective against both Gram-positive and Gram-negative aerobic bacteria, and it is characterized by a fast bactericidal effect, even against multidrug-resistant microorganisms (MDR).


Assuntos
Gentamicinas , Tobramicina , Tobramicina/farmacologia , Tobramicina/uso terapêutico , Resistência Microbiana a Medicamentos , Aminoglicosídeos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
6.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35887348

RESUMO

This work focuses on formulating liposomes to be used in isolated kidney dynamic machine perfusion in hypothermic conditions as drug delivery systems to improve preservation of transplantable organs. The need mainly arises from use of kidneys from marginal donors for transplantation that are more exposed to ischemic/reperfusion injury compared to those from standard donors. Two liposome preparation techniques, thin film hydration and microfluidic techniques, are explored for formulating liposomes loaded with two model proteins, myoglobin and bovine serum albumin. The protein-loaded liposomes are characterized for their size by DLS and morphology by TEM. Protein releases from the liposomes are tested in PERF-GEN perfusion fluid, 4 °C, and compared to the in vitro protein release in PBS, 37 °C. Fluorescent liposome uptake is analyzed by fluorescent microscope in vitro on epithelial tubular renal cell cultures and ex vivo on isolated pig kidney in hypothermic perfusion conditions. The results show that microfluidics are a superior technique for obtaining reproducible spherical liposomes with suitable size below 200 nm. Protein encapsulation efficiency is affected by its molecular weight and isoelectric point. Lowering incubation temperature slows down the proteins release; the perfusion fluid significantly affects the release of proteins sensitive to ionic media (such as BSA). Liposomes are taken up by epithelial tubular renal cells in two hours' incubation time.


Assuntos
Lipossomos , Diálise Renal , Animais , Técnicas In Vitro , Rim , Perfusão , Suínos
7.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360832

RESUMO

Microfluidic technique has emerged as a promising tool for the production of stable and monodispersed nanoparticles (NPs). In particular, this work focuses on liposome production by microfluidics and on factors involved in determining liposome characteristics. Traditional fabrication techniques for microfluidic devices suffer from several disadvantages, such as multistep processing and expensive facilities. Three-dimensional printing (3DP) has been revolutionary for microfluidic device production, boasting facile and low-cost fabrication. In this study, microfluidic devices with innovative micromixing patterns were developed using fused deposition modelling (FDM) and liquid crystal display (LCD) printers. To date, this work is the first to study liposome production using LCD-printed microfluidic devices. The current study deals with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes with cholesterol (2:1) prepared using commercial and 3D-printed microfluidic devices. We evaluated the effect of microfluidic parameters, chip manufacturing, material, and channel design on liposomal formulation by analysing the size, PDI, and ζ-potential. Curcumin exhibits potent anticancer activity and it has been reported that curcumin-loaded liposomes formulated by microfluidics show enhanced encapsulation efficiency when compared with other reported systems. In this work, curcumal liposomes were produced using the developed microfluidic devices and particle sizing, ζ-potential, encapsulation efficiency, and in vitro release studies were performed at 37 °C.


Assuntos
Curcumina/administração & dosagem , Sistemas de Liberação de Medicamentos , Lipossomos , Microfluídica/instrumentação , Nanopartículas , Impressão Tridimensional
8.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34948352

RESUMO

Peripheral artery occlusive disease is an emerging cardiovascular disease characterized by the blockage of blood vessels in the limbs and is associated with dysfunction, gangrene, amputation, and a high mortality risk. Possible treatments involve by-pass surgery using autologous vessel grafts, because of the lack of suitable synthetic small-diameter vascular prosthesis. One to five percent of patients experience vascular graft infection, with a high risk of haemorrhage, spreading of the infection, amputation and even death. In this work, an infection-proof vascular graft prototype was designed and manufactured by electrospinning 12.5% w/v poly-L-lactic-co-glycolic acid solution in 75% v/v dichloromethane, 23.8% v/v dimethylformamide and 1.2% v/v water, loaded with 0.2% w/wPLGA. Polymer and tobramycin concentrations were selected after viscosity and surface tension and after HPLC-UV encapsulation efficiency (EE%) evaluation, respectively. The final drug-loaded prototype had an EE% of 95.58% ± 3.14%, with smooth fibres in the nanometer range and good porosity; graft wall thickness was 291 ± 20.82 µm and its internal diameter was 2.61 ± 0.05 mm. The graft's antimicrobic activity evaluation through time-kill assays demonstrated a significant and strong antibacterial activity over 5 days against Staphylococcus aureus and Escherichia coli. An indirect cell viability assay on Normal Human Dermal Fibroblasts (NHDF) confirmed the cytocompatibility of the grafts.


Assuntos
Antibacterianos/administração & dosagem , Prótese Vascular , Sistemas de Liberação de Medicamentos , Tobramicina/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/instrumentação , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos , Tobramicina/química , Tobramicina/farmacologia , Enxerto Vascular
9.
Int J Mol Sci ; 21(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143536

RESUMO

Aim of work was to locate a simple, reproducible protocol for uniform seeding and optimal cellularization of biodegradable patch minimizing the risk of structural damages of patch and its contamination in long-term culture. Two seeding procedures are exploited, namely static seeding procedures on biodegradable and biocompatible patches incubated as free floating (floating conditions) or supported by CellCrownTM insert (fixed conditions) and engineered by porcine bone marrow MSCs (p-MSCs). Scaffold prototypes having specific structural features with regard to pore size, pore orientation, porosity, and pore distribution were produced using two different techniques, such as temperature-induced precipitation method and electrospinning technology. The investigation on different prototypes allowed achieving several implementations in terms of cell distribution uniformity, seeding efficiency, and cellularization timing. The cell seeding protocol in stating conditions demonstrated to be the most suitable method, as these conditions successfully improved the cellularization of polymeric patches. Furthermore, the investigation provided interesting information on patches' stability in physiological simulating experimental conditions. Considering the in vitro results, it can be stated that the in vitro protocol proposed for patches cellularization is suitable to achieve homogeneous and complete cellularizations of patch. Moreover, the protocol turned out to be simple, repeatable, and reproducible.


Assuntos
Materiais Biocompatíveis/química , Esôfago/patologia , Esôfago/cirurgia , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Animais , Células da Medula Óssea/citologia , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Microscopia Eletrônica de Varredura , Poliésteres/química , Porosidade , Suínos , Temperatura , Alicerces Teciduais/química
10.
Int J Mol Sci ; 20(24)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31835390

RESUMO

Chitosan nanoparticles (CS NPs) showed promising results in drug, vaccine and gene delivery for the treatment of various diseases. The considerable attention towards CS was owning to its outstanding biological properties, however, the main challenge in the application of CS NPs was faced during their size-controlled synthesis. Herein, ionic gelation reaction between CS and sodium tripolyphosphate (TPP), a widely used and safe CS cross-linker for biomedical application, was exploited by a microfluidic approach based on a staggered herringbone micromixer (SHM) for the synthesis of TPP cross-linked CS NPs (CS/TPP NPs). Screening design of experiments was applied to systematically evaluate the main process and formulative factors affecting CS/TPP NPs physical properties (mean size and size distribution). Effectiveness of the SHM-assisted manufacturing process was confirmed by the preliminary evaluation of the biological performance of the optimized CS/TPP NPs that were internalized in the cytosol of human mesenchymal stem cells through clathrin-mediated mechanism. Curcumin, selected as a challenging model drug, was successfully loaded into CS/TPP NPs (EE% > 70%) and slowly released up to 48 h via the diffusion mechanism. Finally, the comparison with the conventional bulk mixing method corroborated the efficacy of the microfluidics-assisted method due to the precise control of mixing at microscales.


Assuntos
Quitosana , Curcumina , Portadores de Fármacos , Dispositivos Lab-On-A-Chip , Células-Tronco Mesenquimais/metabolismo , Nanopartículas , Polifosfatos , Quitosana/química , Quitosana/farmacocinética , Quitosana/farmacologia , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacologia , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico , Polifosfatos/química , Polifosfatos/farmacocinética , Polifosfatos/farmacologia
11.
Int J Mol Sci ; 19(8)2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087241

RESUMO

Bronchiolitis obliterans syndrome (BOS), caused by lung allograft-derived mesenchymal cells' abnormal proliferation and extracellular matrix deposition, is the main cause of lung allograft rejection. In this study, a mild one-step ionotropic gelation method was set up to nanoencapsulate the everolimus, a key molecule in allograft organ rejection prevention, into hyaluronic acid-decorated chitosan-based nanoparticles. Rationale was the selective delivery of everolimus into lung allograft-derived mesenchymal cells; these cells are characterized by the CD44-overexpressing feature, and hyaluronic acid has proven to be a natural selective CD44-targeting moiety. The optimal process conditions were established by a design of experiment approach (full factorial design) aiming at the control of the nanoparticle size (≤200 nm), minimizing the size polydispersity (PDI 0.171 ± 0.04), and at the negative ζ potential maximization (-30.9 mV). The everolimus was successfully loaded into hyaluronic acid-decorated chitosan-based nanoparticles (95.94 ± 13.68 µg/100 mg nanoparticles) and in vitro released in 24 h. The hyaluronic acid decoration on the nanoparticles provided targetability to CD44-overexpressing mesenchymal cells isolated from bronchoalveolar lavage of BOS-affected patients. The mesenchymal cells' growth tests along with the nanoparticles uptake studies, at 37 °C and 4 °C, respectively, demonstrated a clear improvement of everolimus inhibitory activity when it is encapsulated in hyaluronic acid-decorated chitosan-based nanoparticles, ascribable to their active uptake mechanism.


Assuntos
Antineoplásicos/administração & dosagem , Quitosana/análogos & derivados , Sistemas de Liberação de Medicamentos , Everolimo/administração & dosagem , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/análogos & derivados , Nanopartículas/química , Adulto , Antineoplásicos/farmacocinética , Linhagem Celular , Everolimo/farmacocinética , Fibroblastos/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/ultraestrutura
12.
Int J Mol Sci ; 19(8)2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082640

RESUMO

Selectively targeted nanoscale drug delivery systems have recently emerged as promising intravenously therapeutic option for most chronic joint diseases. Here, a newly synthetized dodecapeptide (GE11)-polylactide-co-glycolide (PLGA)-based conjugate was used to prepare smart nanoparticles (NPs) intended for intra-articular administration and for selectively targeting Epidermal Growth Factor Receptor (EGFR). GE11-PLGA conjugate-based NPs are specifically uptaken by EGFR-overexpressed fibroblast; such as synoviocytes; which are the primarily cellular component involved in the development of destructive joint inflammation. The selective uptake could help to tune drug effectiveness in joints and to decrease local and systemic side effects. Dexamethasone (DXM) is a glucorticoid drug commonly used in joint disease treatment for both systemic and local administration route. In the present research; DXM was efficiently loaded into GE11-PLGA conjugate-based NPs through an eco-friendly nanoprecipitation method set up for this purpose. DXM loaded GE11-PLGA conjugate-based NPs revealed satisfactory ex vivo cytocompatibility; with proper size (≤150 nm) and good dimensional stability in synovial fluid. Intra-articular formulation was developed embedding DXM loaded GE11-PLGA conjugate-based NPs into thermosetting chitosan-based hydrogel; forming a biocompatible composite hydrogel able to quickly turn from liquid state into gel state at physiological temperature; within 15 min. Moreover; the use of thermosetting chitosan-based hydrogel extends the local release of active agent; DXM.


Assuntos
Dexametasona/química , Ácido Láctico/química , Nanopartículas/química , Peptídeos/química , Ácido Poliglicólico/química , Animais , Quitosana/química , Receptores ErbB/química , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
13.
J Microencapsul ; 33(2): 137-45, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26791322

RESUMO

Ovarian follicle encapsulation in synthetic or natural matrixes based on biopolymers is potentially a promising approach to in vitro maturation (IVM) process, since it maintains follicle 3D organisation by preventing its flattening and consequent disruption of gap junctions, preserving the functional relationship between oocyte and companion follicle cells. The aim of the work was to optimise physico-chemical parameters of alginate microcapsules for perspective IVM under 3D environments. On this purpose alginate and cross-linking agent concentrations were investigated. Alginate concentration between 0.75% and 0.125% w/w and Mg(2+), Ba(2+), Ca(2+ )at concentration between 100 and 20 mM were tested. Follicle encapsulation was obtained by on purpose modified diffusion setting gelation technique, and evaluated together with beads, chemical and mechanical stability in standard and stressing conditions. Beads permeability was tested towards albumin, fetuin, pyruvate, glucose, pullulan. Results demonstrated that 0.25% alginate cross-linked in 100 mM CaCl2 beads is suitable to follicle encapsulation.


Assuntos
Alginatos/química , Reagentes de Ligações Cruzadas/química , Células do Cúmulo/citologia , Oócitos/citologia , Animais , Bário/química , Cálcio/química , Cápsulas/química , Cátions Bivalentes/química , Sobrevivência Celular , Células Cultivadas , Células Imobilizadas/citologia , Composição de Medicamentos/métodos , Feminino , Géis/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Magnésio/química , Camundongos , Permeabilidade
14.
J Microencapsul ; 33(8): 750-762, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27845595

RESUMO

The aim of this work was the assessment of the "in vivo" immune response of a poly(lactide-co-glycolide)-based nanoparticulate adjuvant for a sub-unit vaccine, namely, a purified recombinant collagen-binding bacterial adhesion fragment (CNA19), against Staphylococcus aureus-mediated infections. "In vivo" immunogenicity studies were performed on mice: immunisation protocols encompassed subcutaneous and intranasal administration of CNA19 formulated as nanoparticles (NPs) and furthermore, CNA19-loaded NPs formulated in a set-up thermosetting chitosan-ß-glycerolphosphate (chitosan-ß-GP) solution for intranasal route in order to extend antigen exposure to nasal mucosa. CNA19 loaded NPs (mean size of about 195 nm, 9.04 ± 0.37µg/mg as CNA19 loading capacity) confirmed as suitable vaccine for subcutaneous administration with a more pronounced adjuvant effect (about 3-fold higher) with respect to aluminium, recognised as "reference" adjuvant. CNA19 loaded NPs formulated in an optimised thermogelling chitosan-ß-GP solution showed promising results for eliciting an effective humoral response and a good chance as intranasal boosting dose.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Portadores de Fármacos/química , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/administração & dosagem , Staphylococcus aureus/imunologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Administração Intranasal , Animais , Feminino , Imunidade Humoral , Camundongos , Camundongos Endogâmicos BALB C , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Infecções Estafilocócicas/imunologia , Vacinas Antiestafilocócicas/farmacologia , Vacinas Antiestafilocócicas/uso terapêutico , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/farmacologia , Vacinas Sintéticas/uso terapêutico
15.
Drug Dev Ind Pharm ; 41(7): 1182-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24994001

RESUMO

The aim was to design sterile biodegradable microparticulate drug delivery systems based on poly(dl-lactide) (PLA) and poly(ε-caprolactone) (PCL) and containing ivermectin (IVM), an antiparasitic drug, for subcutaneous administration in dogs. The drug delivery system should: (i) ensure a full 12-month protection upon single dose administration; (ii) be safe with particular attention regarding IVM dosage and its release, in order to prevent over dosage side effects. This preliminary work involves: polymer selection, evaluation of the effects of γ-irradiation on the polymers and IVM, investigation and set up of suitable microparticle preparation process and parameters, IVM-loaded microparticles in vitro release evaluation. Results of gel permeation chromatography analysis on the irradiated polymers and IVM mixtures showed that combination of IVM with the antioxidant α-tocopherol (TCP) reduces the damage extent induced by irradiation treatment, independently on the polymer type. Solvent evaporation process was successfully used for the preparation of PLA microparticles and appropriately modified; it was recognized as suitable for the preparation of PCL microparticles. Good process yields were achieved ranging from 76.08% to 94.72%; encapsulation efficiency was between 85.76% and 91.25%, independently from the polymer used. The type of polymer and the consequent preparation process parameters affected microparticle size that was bigger for PCL microparticles (480-800 µm) and solvent residual that was >500 ppm for PLA microparticles. In vitro release test showed significantly faster IVM release rates from PCL microparticles, with respect to PLA microparticles, suggesting that a combination of the polymers could be used to obtain the suitable drug release rate.


Assuntos
Antiparasitários/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/veterinária , Ivermectina/administração & dosagem , Animais , Antiparasitários/efeitos adversos , Química Farmacêutica/métodos , Preparações de Ação Retardada , Doenças do Cão/prevenção & controle , Cães , Ivermectina/efeitos adversos , Microesferas , Tamanho da Partícula , Poliésteres/química , Solventes/química
16.
AAPS PharmSciTech ; 16(5): 1129-39, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25700978

RESUMO

A stability study was performed on ivermectin (IVM)-loaded biodegradable microparticles intended for injection in dogs. The rational was to evaluate the performances upon irradiation of a drug, such as IVM, with a few criticalities with respect to its stability, and toxicity. The goal was to provide valuable information for pharmaceutical scientists and manufacturers working in the veterinary area. The microspheres based on poly(D,L-lactide) and poly-(ε-caprolactone) and loaded with IVM and with the addition of alpha-tocopherol (TCP) as antioxidant were prepared by the emulsion solvent evaporation method and sterilized by gamma irradiation. Microsphere characterization in term of size, shape, polymer, and IVM stability upon irradiation was performed. The results show that the type of polymer significantly affects microsphere characteristics and performances. Moreover, suitably stable formulations can be achieved only by TCP addition.


Assuntos
Antiparasitários/química , Portadores de Fármacos , Ivermectina/química , Poliésteres/química , Drogas Veterinárias/química , Antioxidantes/química , Antiparasitários/efeitos da radiação , Composição de Medicamentos , Estabilidade de Medicamentos , Excipientes/química , Raios gama , Ivermectina/efeitos da radiação , Microesferas , Modelos Químicos , Solubilidade , Drogas Veterinárias/efeitos da radiação , alfa-Tocoferol/química
17.
AAPS PharmSciTech ; 15(1): 75-82, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24146118

RESUMO

Tridimensional scaffolds can promote bone regeneration as a framework supporting the migration of cells from the surrounding tissue into the damaged tissue and as delivery systems for the controlled or prolonged release of cells, genes, and growth factors. The goal of the work was to obtain an advanced medical device for bone regeneration through coating a decellularized and deproteinized bone matrix of bovine origin with a biodegradable, biocompatible polymer, to improve the cell engraftment on the bone graft. The coating protocol was studied and set up to obtain a continuous and homogeneous polylactide-co-glycolide (PLGA) coating on the deproteinized bone matrix Orthoss® block without occluding pores and decreasing the scaffold porosity. The PLGA-coated scaffolds were characterized for their morphology and porosity. The effects of PLGA polymer coating on cell viability were assessed with the 3-(4,5-dimethyl-2-thiazolyl)-2,5 diphenyl-2H-tetrazolium assay. The polymer solution concentration and the number of polymeric layers were the main variables affecting coating efficiency and porosity of the original decellularized bone matrix. The designed polymer coating protocol did not affect the trabecular structure of the original decellularized bone matrix. The PLGA-coated decellularized bone matrix maintained the structural features, and it improved the ability in stimulating fibroblasts attachment and proliferation.


Assuntos
Regeneração Óssea/fisiologia , Equipamentos e Provisões , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Implantes Absorvíveis , Matriz Óssea/química , Matriz Óssea/fisiologia , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Fibroblastos/fisiologia , Humanos , Ácido Láctico/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Porosidade , Engenharia Tecidual/métodos
18.
Polymers (Basel) ; 16(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38794598

RESUMO

Poly (glycerol sebacate) is a widely studied elastomeric copolymer obtained from the polycondensation of two bioresorbable monomers, glycerol and sebacic acid. Due to its biocompatibility and the possibility to tailor its biodegradability rate and mechanical properties, PGS has gained lots of interest in the last two decades, especially in the soft tissue engineering field. Different synthetic approaches have been proposed, ranging from classic thermal polyesterification and curing to microwave-assisted organic synthesis, UV crosslinking and enzymatic catalysis. Each technique, characterized by its advantages and disadvantages, can be tailored by controlling the crosslinking density, which depends on specific synthetic parameters. In this work, classic and alternative synthetic methods, as well as characterisation and tailoring techniques, are critically reviewed with the aim to provide a valuable tool for the reproducible and customized production of PGS for tissue engineering applications.

19.
Gels ; 10(4)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38667682

RESUMO

Supramolecular gels were developed by taking advantage of an assembly of small dipeptides containing pyrrolo-pyrazole scaffolds. The dipeptides were prepared through a robust and ecofriendly synthetic approach from the commercially available starting materials of diazoalkanes and maleimides. By playing with the functionalization of the scaffold, the choice of the natural amino acid, and the stereochemistry, we were able to obtain phase-selective gels. In particular, one peptidomimetic showed gelation ability and thermoreversibility in aromatic solvents at very low concentrations. Rheology tests showed a typical viscoelastic solid profile, indicating the formation of strong gels that were stable under high mechanical deformation. NMR studies were performed, allowing us to determine the conformational and stereochemical features at the base of the supramolecular interactions.

20.
Pharmaceutics ; 16(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38675169

RESUMO

Lipid-based nanocarriers have emerged as helpful tools to deliver sensible biomolecules such as proteins and oligonucleotides. To have a fast and robust microfluidic-based nanoparticle synthesis method, the setup of versatile equipment should allow for the rapid transfer to scale cost-effectively while ensuring tunable, precise and reproducible nanoparticle attributes. The present work aims to assess the effect of different micromixer geometries on the manufacturing of lipid nanocarriers taking into account the influence on the mixing efficiency by changing the fluid-fluid interface and indeed the mass transfer. Since the geometry of the adopted micromixer varies from those already published, a Design of Experiment (DoE) was necessary to identify the operating (total flow, flow rate ratio) and formulation (lipid concentration, lipid molar ratios) parameters affecting the nanocarrier quality. The suitable application of the platform was investigated by producing neutral, stealth and cationic liposomes, using DaunoXome®, Myocet®, Onivyde® and Onpattro® as the benchmark. The effect of condensing lipid (DOTAP, 3-10-20 mol%), coating lipids (DSPE-PEG550 and DSPE-PEG2000), as well as structural lipids (DSPC, eggPC) was pointed out. A very satisfactory encapsulation efficiency, always higher than 70%, was successfully obtained for model biomolecules (myoglobin, short and long nucleic acids).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA