Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 141(17): 2085-2099, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36800642

RESUMO

Sickle cell disease (SCD) is a monogenic disease caused by a nucleotide mutation in the ß-globin gene. Current gene therapy studies are mainly focused on lentiviral vector-mediated gene addition or CRISPR/Cas9-mediated fetal globin reactivation, leaving the root cause unfixed. We developed a vectorized prime editing system that can directly repair the SCD mutation in hematopoietic stem cells (HSCs) in vivo in a SCD mouse model (CD46/Townes mice). Our approach involved a single intravenous injection of a nonintegrating, prime editor-expressing viral vector into mobilized CD46/Townes mice and low-dose drug selection in vivo. This procedure resulted in the correction of ∼40% of ßS alleles in HSCs. On average, 43% of sickle hemoglobin was replaced by adult hemoglobin, thereby greatly mitigating the SCD phenotypes. Transplantation in secondary recipients demonstrated that long-term repopulating HSCs were edited. Highly efficient target site editing was achieved with minimal generation of insertions and deletions and no detectable off-target editing. Because of its simplicity and portability, our in vivo prime editing approach has the potential for application in resource-poor countries where SCD is prevalent.


Assuntos
Anemia Falciforme , Edição de Genes , Camundongos , Animais , Edição de Genes/métodos , Sistemas CRISPR-Cas , Anemia Falciforme/genética , Anemia Falciforme/terapia , Células-Tronco Hematopoéticas , Hemoglobina Falciforme/genética
2.
Blood ; 138(17): 1540-1553, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34086867

RESUMO

Thalassemia or sickle cell patients with hereditary persistence of fetal hemoglobin (HbF) have an ameliorated clinical phenotype and, in some cases, can achieve transfusion independence. Inactivation via genome editing of γ-globin developmental suppressors, such as BCL11A or LRF/ZBTB7A, or of their binding sites, have been shown to significantly increase expression of endogenous HbF. To broaden the therapeutic window beyond a single-editing approach, we have explored combinations of cis- and trans-editing targets to enhance HbF reactivation. Multiplex mutagenesis in adult CD34+ cells was well tolerated and did not lead to any detectable defect in the cells' proliferation and differentiation, either in vitro or in vivo. The combination of 1 trans and 1 cis mutation resulted in high editing retention in vivo, coupled with almost pancellular HbF expression in NBSGW mice. The greater in vivo performance of this combination was also recapitulated using a novel helper-dependent adenoviral-CRISPR vector (HD-Ad-dualCRISPR) in CD34+ cells from ß-thalassemia patients transplanted to NBSGW mice. A pronounced increase in HbF expression was observed in human red blood cells in mice with established predominant ß0/ß0-thalassemic hemopoiesis after in vivo injection of the HD-Ad-dualCRISPR vector. Collectively, our data suggest that the combination of cis and trans fetal globin reactivation mutations has the potential to significantly increase HbF both totally and on a per cell basis over single editing and could thus provide significant clinical benefit to patients with severe ß-globin phenotype.


Assuntos
Antígenos CD34/genética , Hemoglobina Fetal/genética , Mutagênese , Talassemia beta/genética , Adulto , Animais , Sistemas CRISPR-Cas , Células Cultivadas , Edição de Genes , Terapia Genética , Humanos , Camundongos , Talassemia beta/terapia , gama-Globinas/genética
3.
Mol Ther ; 29(2): 822-837, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32949495

RESUMO

We have recently reported that, after in vivo hematopoietic stem cell/progenitor (HSPC) transduction with HDAd5/35++ vectors, SB100x transposase-mediated γ-globin gene addition achieved 10%-15% γ-globin of adult mouse globin, resulting in significant but incomplete phenotypic correction in a thalassemia intermedia mouse model. Furthermore, genome editing of a γ-globin repressor binding site within the γ-globin promoter by CRISPR-Cas9 results in efficient reactivation of endogenous γ-globin. Here, we aimed to combine these two mechanisms to obtain curative levels of γ-globin after in vivo HSPC transduction. We generated a HDAd5/35++ adenovirus vector (HDAd-combo) containing both modules and tested it in vitro and after in vivo HSPC transduction in healthy CD46/ß-YAC mice and in a sickle cell disease mouse model (CD46/Townes). Compared to HDAd vectors containing either the γ-globin addition or the CRISPR-Cas9 reactivation units alone, in vivo HSC transduction of CD46/Townes mice with the HDAd-combo resulted in significantly higher γ-globin in red blood cells, reaching 30% of that of adult human α and ßS chains and a complete phenotypic correction of sickle cell disease.


Assuntos
Adenoviridae/genética , Anemia Falciforme/genética , Anemia Falciforme/terapia , Terapia Genética , Vetores Genéticos/genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Animais , Modelos Animais de Doenças , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Camundongos , Transgenes
4.
Clin Infect Dis ; 73(11): 2073-2082, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-33905481

RESUMO

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses an urgent need for the development of effective therapies for coronavirus disease 2019 (COVID-19). METHODS: We first tested SARS-CoV-2-specific T-cell (CοV-2-ST) immunity and expansion in unexposed donors, COVID-19-infected individuals (convalescent), asymptomatic polymerase chain reaction (PCR)-positive subjects, vaccinated individuals, non-intensive care unit (ICU) hospitalized patients, and ICU patients who either recovered and were discharged (ICU recovered) or had a prolonged stay and/or died (ICU critical). CoV-2-STs were generated from all types of donors and underwent phenotypic and functional assessment. RESULTS: We demonstrate causal relationship between the expansion of endogenous CoV-2-STs and the disease outcome; insufficient expansion of circulating CoV-2-STs identified hospitalized patients at high risk for an adverse outcome. CoV-2-STs with a similarly functional and non-alloreactive, albeit highly cytotoxic, profile against SARS-CoV-2 could be expanded from both convalescent and vaccinated donors generating clinical-scale, SARS-CoV-2-specific T-cell products with functional activity against both the unmutated virus and its B.1.1.7 and B.1.351 variants. In contrast, critical COVID-19 patient-originating CoV-2-STs failed to expand, recapitulating the in vivo failure of CoV-2-specific T-cell immunity to control the infection. CoV-2-STs generated from asymptomatic PCR-positive individuals presented only weak responses, whereas their counterparts originating from exposed to other seasonal coronaviruses subjects failed to kill the virus, thus disempowering the hypothesis of protective cross-immunity. CONCLUSIONS: Overall, we provide evidence on risk stratification of hospitalized COVID-19 patients and the feasibility of generating powerful CoV-2-ST products from both convalescent and vaccinated donors as an "off-the shelf" T-cell immunotherapy for high-risk patients.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Imunoterapia Adotiva , Linfócitos T
5.
Mol Ther ; 27(12): 2195-2212, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31494053

RESUMO

Our goal is the development of in vivo hematopoietic stem cell (HSC) transduction technology with targeted integration. To achieve this, we modified helper-dependent HDAd5/35++ vectors to express a CRISPR/Cas9 specific to the "safe harbor" adeno-associated virus integration site 1 (AAVS1) locus and to provide a donor template for targeted integration through homology-dependent repair. We tested the HDAd-CRISPR + HDAd-donor vector system in AAVS1 transgenic mice using a standard ex vivo HSC gene therapy approach as well as a new in vivo HSC transduction approach that involves HSC mobilization and intravenous HDAd5/35++ injections. In both settings, the majority of treated mice had transgenes (GFP or human γ-globin) integrated into the AAVS1 locus. On average, >60% of peripheral blood cells expressed the transgene after in vivo selection with low-dose O6BG/bis-chloroethylnitrosourea (BCNU). Ex vivo and in vivo HSC transduction and selection studies with HDAd-CRISPR + HDAd-globin-donor resulted in stable γ-globin expression at levels that were significantly higher (>20% γ-globin of adult mouse globin) than those achieved in previous studies with a SB100x-transposase-based HDAd5/35++ system that mediates random integration. The ability to achieve therapeutically relevant transgene expression levels after in vivo HSC transduction and selection and targeted integration make our HDAd5/35++-based vector system a new tool in HSC gene therapy.


Assuntos
Adenoviridae/genética , Dependovirus/genética , Vetores Genéticos/genética , Células-Tronco Hematopoéticas/metabolismo , Transdução Genética , Transgenes/fisiologia , Integração Viral , Animais , Sistemas CRISPR-Cas , Feminino , Genes Reporter , Terapia Genética , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , gama-Globinas/antagonistas & inibidores , gama-Globinas/genética
6.
Mol Ther Methods Clin Dev ; 29: 213-226, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37081854

RESUMO

In previous studies, we achieved safe and efficient in vivo hematopoietic stem cell (HSC) transduction in mobilized mice and macaques with intravenously injected helper-dependent adenovirus HDAd5/35++ vectors. These vectors are derivatives of serotype Ad5-containing CD46-affinity enhanced Ad35 fiber knob domains. Considering the impact of anti-Ad5/HDAd5/35++ neutralizing serum antibodies present in the human population, we generated HSC-retargeted HDAd6/35++ vectors derived from serotype 6. We found a lower prevalence and titers of serum anti-HDAd6/35++ in human samples compared with HDAd5/35++. HDAd6/35++ vectors efficiently transduced human and rhesus CD34+ cells in vitro. Intravenous injection of HDAd5/35++-GFP or HDAd6/35++-GFP vectors after G-CSF/AMD3100 mobilization of mice with established human hematopoiesis or human CD46 transgenic mice resulted in comparable GFP marking rates in HSCs in the bone marrow and spleen. In long-term in vivo HSC transduction and selection studies with integrating vectors, stable GFP expression in >75% of PBMCs was show for both vectors. In contrast with HDAd5/35++, undesired transduction of hepatocytes was minimal with HDAd6/35++. Furthermore, HDAd6/35++ allowed for efficient in vivo HSC transduction in Ad5-pre-immune mice. These features, together with the straightforward production of HDAd6/35++ vectors at high yield, make this new HDAd vector platform attractive for clinical translation of the in vivo approach.

7.
Redox Biol ; 62: 102701, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37094517

RESUMO

We and others have reported that senescence onset is accompanied by genomic instability that is evident by several defects, such as aneuploidy or erroneous mitosis features. Here, we report that these defects also appear in young cells upon oxidative insult. We provide evidence that these errors could be the consequence of oxidative stress (OS)- either exogenous or senescence-associated - overriding the spindle assembly checkpoint (SAC). Young cells treated with Η2Ο2 as well as older cells fail to maintain mitotic arrest in the presence of spindle poisons and a significant higher percentage of them have supernumerary centrosomes and centrosome related anomalous characteristics. We also report that aging is escorted by expression modifications of SAC components, and especially of Bub1b/BubR1. Bub1b/BubR1 has been previously reported to decrease naturally upon aging. Here, we show that there is an initial increase in Bub1b/BubR1 levels, feasibly as part of the cells' response against OS-driven genomic instability, that is followed by its autophagy dependent degradation. This provides an explanation that was missing regarding the molecular entity responsible for the downregulation of Bub1b/BubR1 upon aging, especially since it is well established, by us and others, that the proteasome function decays as cells age. These results, not only serve the previously reported notion of a shift from proteasome to autophagy-dependent degradation upon aging, but also provide a mechanistic insight for mitotic errors-driven senescence. We believe that our conclusions deepen our understanding regarding the homeostatic function of autophagy that serves the establishment of senescence as a barrier against cellular transformation.


Assuntos
Autofagia , Mitose , Animais , Camundongos , Células Cultivadas , Instabilidade Genômica , Complexo de Endopeptidases do Proteassoma/metabolismo
8.
Nat Med ; 29(8): 2019-2029, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37460756

RESUMO

Despite advances, few therapeutics have shown efficacy in severe coronavirus disease 2019 (COVID-19). In a different context, virus-specific T cells have proven safe and effective. We conducted a randomized (2:1), open-label, phase 1/2 trial to evaluate the safety and efficacy of off-the-shelf, partially human leukocyte antigen (HLA)-matched, convalescent donor-derived severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells (CoV-2-STs) in combination with standard of care (SoC) in patients with severe COVID-19 compared to SoC during Delta variant predominance. After a dose-escalated phase 1 safety study, 90 participants were randomized to receive CoV-2-ST+SoC (n = 60) or SoC only (n = 30). The co-primary objectives of the study were the composite of time to recovery and 30-d recovery rate and the in vivo expansion of CoV-2-STs in patients receiving CoV-2-ST+SoC over SoC. The key secondary objective was survival on day 60. CoV-2-ST+SoC treatment was safe and well tolerated. The study met the primary composite endpoint (CoV-2-ST+SoC versus SoC: recovery rate 65% versus 38%, P = 0.017; median recovery time 11 d versus not reached, P = 0.052, respectively; rate ratio for recovery 1.71 (95% confidence interval 1.03-2.83, P = 0.036)) and the co-primary objective of significant CoV-2-ST expansion compared to SοC (CoV-2-ST+SoC versus SoC, P = 0.047). Overall, in hospitalized patients with severe COVID-19, adoptive immunotherapy with CoV-2-STs was feasible and safe. Larger trials are needed to strengthen the preliminary evidence of clinical benefit in severe COVID-19. EudraCT identifier: 2021-001022-22 .


Assuntos
COVID-19 , Humanos , COVID-19/terapia , SARS-CoV-2 , Imunoterapia Adotiva/efeitos adversos , Terapia Baseada em Transplante de Células e Tecidos , Resultado do Tratamento
10.
Mol Ther Methods Clin Dev ; 24: 127-141, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35036470

RESUMO

We tested a new in vivo hematopoietic stem cell (HSC) transduction/selection approach in rhesus macaques using HSC-tropic, integrating, helper-dependent adenovirus vectors (HDAd5/35++) designed for the expression of human γ-globin in red blood cells (RBCs) to treat hemoglobinopathies. We show that HDAd5/35++ vectors preferentially transduce HSCs in vivo after intravenous injection into granulocyte colony-stimulating factor (G-CSF)/AMD3100-mobilized animals and that transduced cells return to the bone marrow and spleen. The approach was well tolerated, and the activation of proinflammatory cytokines that are usually associated with intravenous adenovirus vector injection was successfully blunted by pre-treatment with dexamethasone in combination with interleukin (IL)-1 and IL-6 receptor blockers. Using our MGMTP140K-based in vivo selection approach, γ-globin+ RBCs increased in all animals with levels up to 90%. After selection, the percentage of γ-globin+ RBCs declined, most likely due to an immune response against human transgene products. Our biodistribution data indicate that γ-globin+ RBCs in the periphery were mostly derived from mobilized HSCs that homed to the spleen. Integration site analysis revealed a polyclonal pattern and no genotoxicity related to transgene integrations. This is the first proof-of-concept study in nonhuman primates to show that in vivo HSC gene therapy could be feasible in humans without the need for high-dose chemotherapy conditioning and HSC transplantation.

11.
JCI Insight ; 7(19)2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36006707

RESUMO

Individuals with ß-thalassemia or sickle cell disease and hereditary persistence of fetal hemoglobin (HPFH) possessing 30% fetal hemoglobin (HbF) appear to be symptom free. Here, we used a nonintegrating HDAd5/35++ vector expressing a highly efficient and accurate version of an adenine base editor (ABE8e) to install, in vivo, a -113 A>G HPFH mutation in the γ-globin promoters in healthy CD46/ß-YAC mice carrying the human ß-globin locus. Our in vivo hematopoietic stem cell (HSC) editing/selection strategy involves only s.c. and i.v. injections and does not require myeloablation and HSC transplantation. In vivo HSC base editing in CD46/ß-YAC mice resulted in > 60% -113 A>G conversion, with 30% γ-globin of ß-globin expressed in 70% of erythrocytes. Importantly, no off-target editing at sites predicted by CIRCLE-Seq or in silico was detected. Furthermore, no critical alterations in the transcriptome of in vivo edited mice were found by RNA-Seq. In vitro, in HSCs from ß-thalassemia and patients with sickle cell disease, transduction with the base editor vector mediated efficient -113 A>G conversion and reactivation of γ-globin expression with subsequent phenotypic correction of erythroid cells. Because our in vivo base editing strategy is safe and technically simple, it has the potential for clinical application in developing countries where hemoglobinopathies are prevalent.


Assuntos
Anemia Falciforme , Hemoglobinopatias , Talassemia beta , Adenina , Anemia Falciforme/genética , Anemia Falciforme/terapia , Animais , Sistemas CRISPR-Cas , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Edição de Genes/métodos , Hemoglobinopatias/genética , Hemoglobinopatias/terapia , Humanos , Camundongos , Globinas beta/genética , Talassemia beta/genética , Talassemia beta/terapia , gama-Globinas/genética
12.
Blood Adv ; 5(4): 1122-1135, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33620431

RESUMO

Base editors are capable of installing precise genomic alterations without creating double-strand DNA breaks. In this study, we targeted critical motifs regulating γ-globin reactivation with base editors delivered via HDAd5/35++ vectors. Through optimized design, we successfully produced a panel of cytidine and adenine base editor (ABE) vectors targeting the erythroid BCL11A enhancer or recreating naturally occurring hereditary persistence of fetal hemoglobin (HPFH) mutations in the HBG1/2 promoter. All 5 tested vectors efficiently installed target base conversion and led to γ-globin reactivation in human erythroid progenitor cells. We observed ~23% γ-globin protein production over ß-globin, when using an ABE vector (HDAd-ABE-sgHBG-2) specific to the -113A>G HPFH mutation. In a ß-YAC mouse model, in vivo hematopoietic progenitor/stem cell (HSPC) transduction with HDAd-ABE-sgHBG-2 followed by in vivo selection resulted in >40% γ-globin+ erythrocytes in the peripheral blood. This result corresponded to 21% γ-globin production over human ß-globin. The average -113A>G conversion in total bone marrow cells was 20%. No alterations in hematological parameters, erythropoiesis, and bone marrow cellular composition were observed after treatment. No detectable editing was found at top-scoring, off-target genomic sites. Bone marrow lineage-negative cells from primary mice were capable of reconstituting secondary transplant-recipient mice with stable γ-globin expression. Importantly, the advantage of base editing over CRISPR/Cas9 was reflected by the markedly lower rates of intergenic HBG1/2 deletion and the absence of detectable toxicity in human CD34+ cells. Our observations suggest that HDAd-vectorized base editors represent a promising strategy for precise in vivo genome engineering for the treatment of ß-hemoglobinopathies.


Assuntos
Hemoglobina Fetal , gama-Globinas , Animais , Hemoglobina Fetal/genética , Terapia Genética , Células-Tronco Hematopoéticas , Camundongos , Globinas beta/genética , gama-Globinas/genética
13.
JCI Insight ; 5(16)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32814708

RESUMO

Recently, we demonstrated that hematopoietic stem/progenitor cell (HSPC) mobilization followed by intravenous injection of integrating, helper-dependent adenovirus HDAd5/35++ vectors resulted in efficient transduction of long-term repopulating cells and disease amelioration in mouse models after in vivo selection of transduced HSPCs. Acute innate toxicity associated with HDAd5/35++ injection was controlled by appropriate prophylaxis, making this approach feasible for clinical translation. Our ultimate goal is to use this technically simple in vivo HSPC transduction approach for gene therapy of thalassemia major or sickle cell disease. A cure of these diseases requires high expression levels of the therapeutic protein (γ- or ß-globin), which is difficult to achieve with lentivirus vectors because of their genome size limitation not allowing larger regulatory elements to be accommodated. Here, we capitalized on the 35 kb insert capacity of HDAd5/35++ vectors to demonstrate that transcriptional regulatory regions of the ß-globin locus with a total length of 29 kb can efficiently be transferred into HSPCs. The in vivo HSPC transduction resulted in stable γ-globin levels in erythroid cells that conferred a complete cure of murine thalassemia intermedia. Notably, this was achieved with a minimal in vivo HSPC selection regimen.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/genética , Células-Tronco Hematopoéticas/fisiologia , Sequências Reguladoras de Ácido Nucleico/genética , Talassemia/genética , Adenoviridae/genética , Animais , Antígenos CD34/metabolismo , Elementos de DNA Transponíveis , Modelos Animais de Doenças , Feminino , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Proteína Cofatora de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Talassemia/terapia , Transdução Genética , Globinas beta/genética , gama-Globinas/genética
14.
Front Immunol ; 11: 608701, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33537032

RESUMO

Adoptive immunotherapy (AI) with pathogen-specific T cells is a promising alternative to pharmacotherapy for the treatment of opportunistic infections after allogeneic hematopoietic cell transplantation or solid organ transplantation. However, clinical implementation of AI is limited to patients not receiving high-dose steroids, a prerequisite for optimal T-cell function, practically excluding the most susceptible to infections patients from the benefits of AI. To address this issue, we here rapidly generated, clinical doses of a steroid-resistant T-cell product, simultaneously targeting four viruses (adenovirus, cytomegalovirus, Epstein Barr virus, and BK virus) and the fungus Aspergillus fumigatus, by genetic disruption of the glucocorticoid receptor (GR) gene using CRISPR/CAS9 ribonucleoprotein delivery. The product, "Cerberus" T cells (Cb-STs), was called after the monstrous three-headed dog of Greek mythology, due to its triple potential; specificity against viruses, specificity against fungi and resistance to glucocorticoids. Following efficient on-target GR disruption and minimal off-target editing, the generated Cb-STs maintained the characteristics of pentavalent-STs, their unedited counterparts, including polyclonality, memory immunophenotype, specificity, and cytotoxicity while they presented functional resistance to dexamethasone. Cb-STs may become a powerful, one-time treatment for severely immunosuppressed patients under glucocorticoids who suffer from multiple, life-threatening infections post-transplant, and for whom therapeutic choices are limited.


Assuntos
Glucocorticoides/farmacologia , Hospedeiro Imunocomprometido/imunologia , Infecções Oportunistas/imunologia , Linfócitos T/imunologia , Viroses/imunologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/imunologia , Linhagem Celular , Dexametasona/farmacologia , Células HEK293 , Humanos , Hospedeiro Imunocomprometido/efeitos dos fármacos , Imunoterapia Adotiva/métodos , Infecções Oportunistas/tratamento farmacológico , Receptores de Antígenos Quiméricos/imunologia , Receptores de Glucocorticoides/imunologia , Linfócitos T/efeitos dos fármacos , Viroses/tratamento farmacológico , Vírus/efeitos dos fármacos , Vírus/imunologia
15.
J Clin Invest ; 129(2): 598-615, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30422819

RESUMO

Current thalassemia gene therapy protocols require the collection of hematopoietic stem/progenitor cells (HSPCs), in vitro culture, lentivirus vector transduction, and retransplantation into myeloablated patients. Because of cost and technical complexity, it is unlikely that such protocols will be applicable in developing countries, where the greatest demand for a ß-thalassemia therapy lies. We have developed a simple in vivo HSPC gene therapy approach that involves HSPC mobilization and an intravenous injection of integrating HDAd5/35++ vectors. Transduced HSPCs homed back to the bone marrow, where they persisted long-term. HDAd5/35++ vectors for in vivo gene therapy of thalassemia had a unique capsid that targeted primitive HSPCs through human CD46, a relatively safe SB100X transposase-based integration machinery, a micro-LCR-driven γ-globin gene, and an MGMT(P140K) system that allowed for increasing the therapeutic effect by short-term treatment with low-dose O6-benzylguanine plus bis-chloroethylnitrosourea. We showed in "healthy" human CD46-transgenic mice and in a mouse model of thalassemia intermedia that our in vivo approach resulted in stable γ-globin expression in the majority of circulating red blood cells. The high marking frequency was maintained in secondary recipients. In the thalassemia model, a near-complete phenotypic correction was achieved. The treatment was well tolerated. This cost-efficient and "portable" approach could permit a broader clinical application of thalassemia gene therapy.


Assuntos
Eritrócitos , Regulação da Expressão Gênica , Terapia Genética , Células-Tronco Hematopoéticas/metabolismo , Talassemia beta , gama-Globinas , Adenoviridae , Animais , Linhagem Celular , Modelos Animais de Doenças , Eritrócitos/metabolismo , Eritrócitos/patologia , Vetores Genéticos , Células-Tronco Hematopoéticas/patologia , Humanos , Camundongos , Camundongos Transgênicos , Transdução Genética , Talassemia beta/genética , Talassemia beta/metabolismo , Talassemia beta/patologia , Talassemia beta/terapia , gama-Globinas/biossíntese , gama-Globinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA