Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ear Hear ; 37(5): e322-35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27556365

RESUMO

OBJECTIVE: To record envelope following responses (EFRs) to monaural amplitude-modulated broadband noise carriers in which amplitude modulation (AM) depth was slowly changed over time and to compare these objective electrophysiological measures to subjective behavioral thresholds in young normal hearing and older subjects. PARTICIPANTS: three groups of subjects included a young normal-hearing group (YNH 18 to 28 years; pure-tone average = 5 dB HL), a first older group ("O1"; 41 to 62 years; pure-tone average = 19 dB HL), and a second older group ("O2"; 67 to 82 years; pure-tone average = 35 dB HL). Electrophysiology: In condition 1, the AM depth (41 Hz) of a white noise carrier, was continuously varied from 2% to 100% (5%/s). EFRs were analyzed as a function of the AM depth. In condition 2, auditory steady-state responses were recorded to fixed AM depths (100%, 75%, 50%, and 25%) at a rate of 41 Hz. Psychophysics: A 3 AFC (alternative forced choice) procedure was used to track the AM depth needed to detect AM at 41 Hz (AM detection). The minimum AM depth capable of eliciting a statistically detectable EFR was defined as the physiological AM detection threshold. RESULTS: Across all ages, the fixed AM depth auditory steady-state response and swept AM EFR yielded similar response amplitudes. Statistically significant correlations (r = 0.48) were observed between behavioral and physiological AM detection thresholds. Older subjects had slightly higher (not significant) behavioral AM detection thresholds than younger subjects. AM detection thresholds did not correlate with age. All groups showed a sigmoidal EFR amplitude versus AM depth function but the shape of the function differed across groups. The O2 group reached EFR amplitude plateau levels at lower modulation depths than the normal-hearing group and had a narrower neural dynamic range. In the young normal-hearing group, the EFR phase did not differ with AM depth, whereas in the older group, EFR phase showed a consistent decrease with increasing AM depth. The degree of phase change (or phase slope) was significantly correlated to the pure-tone threshold at 4 kHz. CONCLUSIONS: EFRs can be recorded using either the swept modulation depth or the discrete AM depth techniques. Sweep recordings may provide additional valuable information at suprathreshold intensities including the plateau level, slope, and dynamic range. Older subjects had a reduced neural dynamic range compared with younger subjects suggesting that aging affects the ability of the auditory system to encode subtle differences in the depth of AM. The phase-slope differences are likely related to differences in low and high-frequency contributions to EFR. The behavioral-physiological AM depth threshold relationship was significant but likely too weak to be clinically useful in the present individual subjects who did not suffer from apparent temporal processing deficits.


Assuntos
Envelhecimento/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Audição/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Audiometria de Tons Puros , Potenciais Evocados Auditivos/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
2.
J Acoust Soc Am ; 138(1): 279-83, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26233027

RESUMO

Long-term loudness perception of a sound has been presumed to depend on the spatial distribution of activated auditory nerve fibers as well as their temporal firing pattern. The relative contributions of those two factors were investigated by measuring loudness adaptation to sinusoidally amplitude-modulated 12-kHz tones. The tones had a total duration of 180 s and were either unmodulated or 100%-modulated at one of three frequencies (4, 20, or 100 Hz), and additionally varied in modulation depth from 0% to 100% at the 4-Hz frequency only. Every 30 s, normal-hearing subjects estimated the loudness of one of the stimuli played at 15 dB above threshold in random order. Without any amplitude modulation, the loudness of the unmodulated tone after 180 s was only 20% of the loudness at the onset of the stimulus. Amplitude modulation systematically reduced the amount of loudness adaptation, with the 100%-modulated stimuli, regardless of modulation frequency, maintaining on average 55%-80% of the loudness at onset after 180 s. Because the present low-frequency amplitude modulation produced minimal changes in long-term spectral cues affecting the spatial distribution of excitation produced by a 12-kHz pure tone, the present result indicates that neural synchronization is critical to maintaining loudness perception over time.


Assuntos
Adaptação Fisiológica , Vias Auditivas/fisiologia , Percepção Sonora/fisiologia , Estimulação Acústica , Adulto , Limiar Auditivo/fisiologia , Feminino , Habituação Psicofisiológica , Humanos , Masculino , Fibras Nervosas/fisiologia , Percepção da Altura Sonora/fisiologia , Psicoacústica , Som
3.
Atten Percept Psychophys ; 78(2): 583-601, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26669309

RESUMO

Recent influential models of audiovisual speech perception suggest that visual speech aids perception by generating predictions about the identity of upcoming speech sounds. These models place stock in the assumption that visual speech leads auditory speech in time. However, it is unclear whether and to what extent temporally-leading visual speech information contributes to perception. Previous studies exploring audiovisual-speech timing have relied upon psychophysical procedures that require artificial manipulation of cross-modal alignment or stimulus duration. We introduce a classification procedure that tracks perceptually relevant visual speech information in time without requiring such manipulations. Participants were shown videos of a McGurk syllable (auditory /apa/ + visual /aka/ = perceptual /ata/) and asked to perform phoneme identification (/apa/ yes-no). The mouth region of the visual stimulus was overlaid with a dynamic transparency mask that obscured visual speech in some frames but not others randomly across trials. Variability in participants' responses (~35 % identification of /apa/ compared to ~5 % in the absence of the masker) served as the basis for classification analysis. The outcome was a high resolution spatiotemporal map of perceptually relevant visual features. We produced these maps for McGurk stimuli at different audiovisual temporal offsets (natural timing, 50-ms visual lead, and 100-ms visual lead). Briefly, temporally-leading (~130 ms) visual information did influence auditory perception. Moreover, several visual features influenced perception of a single speech sound, with the relative influence of each feature depending on both its temporal relation to the auditory signal and its informational content.


Assuntos
Estimulação Acústica/métodos , Percepção Auditiva/fisiologia , Estimulação Luminosa/métodos , Percepção da Fala/fisiologia , Estatística como Assunto/métodos , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Fonética , Psicofísica , Fala/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA