Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chempluschem ; 89(7): e202400083, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38523404

RESUMO

We report the synthesis of core-shell Ni-Pt nanoparticles (NPs) with varying degrees of crystallographic facets and surface layers rich in Pt via a seed-mediated thermolytic approach. Mixtures of different surfactants used during synthesis resulted in preferential surface passivation, which in turn dictated the size, chemical composition, and geometric evolution of these PtNi NPs. Electrochemical investigations of these pristine core-shell Ni-Pt structures in the oxygen reduction reaction (ORR) show that their catalytic functionalities outperform the commercial Pt/C reference catalyst. The enhanced electrocatalytic ORR performances of these Pt-based PtNi NPs are correlated with the weakened oxygen binding strength or surface-adsorbed hydroxyl (OH) species on active Pt surface sites induced by the downshift of the d-band center as a result of compressive strain effects. Our studies offer a robust synthetic approach for the development of core-shell nanostructures for enhanced ORR catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA