RESUMO
The most commonly reported symptom of post-Ebola virus disease syndrome in survivors is arthralgia, yet involvement of the joints in acute or convalescent Ebola virus infection is not well characterized in human patients or animal models. Through immunohistochemistry, we found that the lining synovial intima of the stifle (knee) is a target for acute infection by Ebola virus/Kikwit, Ebola virus/Makona-C05, and Marburg virus/Angola in the rhesus macaque model. Furthermore, histologic analysis, immunohistochemistry, RNAscope in situ hybridization, and transmission electron microscopy showed that synoviocytes of the stifle, shoulder, and hip are a target for mouse-adapted Ebola virus/Yambuku-Mayinga infection during acute disease in rhesus macaques. A time course of infection study with Ebola virus/Kikwit found that the large joint synovium became immunopositive beginning on postinfection day 6. In total, the synovium of 28 of 30 rhesus macaques with terminal filovirus disease had evidence of infection (64 of 96 joints examined). On the basis of immunofluorescence, infected cell types included CD68+ type A (macrophage-like) synoviocytes and CD44+ type B (fibroblast-like) synoviocytes. Cultured primary human fibroblast-like synoviocytes were permissive to infection with Ebola and Marburg viruses in vitro. Because synovial joints include immune privileged sites, these findings are significant for future investigations of filovirus pathogenesis and persistence as well as arthralgias in acute and convalescent filovirus disease.
Assuntos
Infecções por Filoviridae/virologia , Sinoviócitos/virologia , Animais , Células Cultivadas , Filoviridae , Humanos , Macaca mulattaRESUMO
The domestic ferret is a uniformly lethal model of infection for 3 species of Ebolavirus known to be pathogenic in humans. Reagents to systematically analyze the ferret host response to infection are lacking; however, the recent publication of a draft ferret genome has opened the potential for transcriptional analysis of ferret models of disease. In this work, we present comparative analysis of longitudinally sampled blood taken from ferrets and nonhuman primates infected with lethal doses of the Makona variant of Zaire ebolavirus. Strong induction of proinflammatory and prothrombotic signaling programs were present in both ferrets and nonhuman primates, and both transcriptomes were similar to previously published datasets of fatal cases of human Ebola virus infection.
Assuntos
Furões/genética , Doença pelo Vírus Ebola/genética , Macaca mulatta/genética , Transcriptoma , Animais , Citocinas/genética , Modelos Animais de Doenças , Feminino , HumanosRESUMO
No therapeutics are approved for the treatment of filovirus infections. Bepridil, a calcium channel blocker developed for treating angina, was identified as a potent inhibitor of filoviruses in vitro, including Ebola and Marburg viruses, and Ebola virus in vivo. We evaluated the efficacy of bepridil in a lethal mouse model of Marburg virus disease. A dose of 12 mg/kg bepridil once or twice daily resulted in 80% or 90% survival, respectively. These data confirm bepridil's broad-spectrum anti-filovirus activity warranting further investigation of bepridil, or improved compounds with a similar mechanism, as a pan-filovirus therapeutic agent.
Assuntos
Bepridil/uso terapêutico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Doença do Vírus de Marburg/tratamento farmacológico , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Doença do Vírus de Marburg/mortalidade , Camundongos , Camundongos Endogâmicos BALB C , Células VeroRESUMO
At the onset of the 2013-2016 epidemic of Ebola virus disease (EVD), no vaccine or antiviral medication was approved for treatment. Therefore, considerable efforts were directed towards the concept of drug repurposing or repositioning. Amiodarone, an approved multi-ion channel blocker for the treatment of cardiac arrhythmia, was reported to inhibit filovirus entry in vitro. Compassionate use of amiodarone in EVD patients indicated a possible survival benefit. In support of further clinical testing, we confirmed anti-Ebola virus activity of amiodarone in different cell types. Despite promising in vitro results, amiodarone failed to protect guinea pigs from a lethal dose of Ebola virus.
Assuntos
Amiodarona/farmacologia , Ebolavirus/efeitos dos fármacos , Amiodarona/farmacocinética , Amiodarona/uso terapêutico , Animais , Chlorocebus aethiops , Feminino , Cobaias , Doença pelo Vírus Ebola/tratamento farmacológico , Masculino , Células VeroRESUMO
Transchromosomic bovines (Tc-bovines) adaptively produce fully human polyclonal immunoglobulin (Ig)G antibodies after exposure to immunogenic antigen(s). The National Interagency Confederation for Biological Research and collaborators rapidly produced and then evaluated anti-Ebola virus IgG immunoglobulins (collectively termed SAB-139) purified from Tc-bovine plasma after sequential hyperimmunization with an Ebola virus Makona isolate glycoprotein nanoparticle vaccine. SAB-139 was characterized by several in vitro production, research, and clinical level assays using wild-type Makona-C05 or recombinant virus/antigens from different Ebola virus variants. SAB-139 potently activates natural killer cells, monocytes, and peripheral blood mononuclear cells and has high-binding avidity demonstrated by surface plasmon resonance. SAB-139 has similar concentrations of galactose-α-1,3-galactose carbohydrates compared with human-derived intravenous Ig, and the IgG1 subclass antibody is predominant. All rhesus macaques infected with Ebola virus/H.sapiens-tc/GIN/2014/Makona-C05 and treated with sufficient SAB-139 at 1 day (n = 6) or 3 days (n = 6) postinfection survived versus 0% of controls. This study demonstrates that Tc-bovines can produce pathogen-specific human Ig to prevent and/or treat patients when an emerging infectious disease either threatens to or becomes an epidemic.
Assuntos
Anticorpos Antivirais/uso terapêutico , Ebolavirus/imunologia , Doença pelo Vírus Ebola/tratamento farmacológico , Imunoglobulina G/uso terapêutico , Animais , Bovinos , Chlorocebus aethiops , Feminino , Humanos , Macaca mulatta , Masculino , Células VeroRESUMO
BACKGROUND: Currently, no FDA-approved vaccines or treatments are available for Ebola virus disease (EVD), and therapy remains largely supportive. Ebola virus (EBOV) has broad tissue tropism and can infect a variety of cells including epithelial cells. Epithelial cells differ from most other cell types by their polarized phenotype and barrier function. In polarized cells, the apical and basolateral membrane domains are demarcated by tight junctions, and specialized sorting machinery, which results in a difference in composition between the two membrane domains. These specialized sorting functions can have important consequences for viral infections. Differential localization of a viral receptor can restrict virus entry to a particular membrane while polarized sorting can lead to a vectorial virus release. The present study investigated the impact of cell polarity on EBOV infection. METHODS: Characteristics of EBOV infection in polarized cells were evaluated in the polarized Caco-2 model grown on semipermeable transwells. Transepithelial resistance (TEER), which is a function of tight junctions, was used to assess epithelial cell polarization. EBOV infection was assessed with immunofluorescence microscopy and qPCR. Statistical significance was calculated using one-way ANOVA and significance was set at p < 0.05. RESULTS: Our data indicate that EBOV preferentially infects cells from the basolateral route, and this preference may be influenced by the resistance across the Caco-2 monolayer. Infection occurs without changes in cellular permeability. Further, our data show that basolateral infection bias may be dependent on polarized distribution of heparan sulfate, a known viral attachment factor. Treatment with iota-carrageenan, or heparin lyase, which interrupts viral interaction with cellular heparan sulfate, significantly reduced cell susceptibility to basolateral infection, likely by inhibiting virus attachment. CONCLUSIONS: Our results show cell polarity has an impact on EBOV infection. EBOV preferentially infects polarized cells through the basolateral route. Access to heparan sulfate is an important factor during basolateral infection and blocking interaction of cellular heparan sulfate with virus leads to significant inhibition of basolateral infection in the polarized Caco-2 cell model.
Assuntos
Ebolavirus/fisiologia , Células Epiteliais/virologia , Heparitina Sulfato/metabolismo , Ligação Viral , Células CACO-2 , Humanos , Microscopia de Fluorescência , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Previous studies have demonstrated little efficacy of interferons (IFNs) in animal models of Ebola virus disease. However, these studies were limited to a small number of type I IFNs and, during the most recent outbreak of Ebola virus, questions regarding the suitability of the animal models to evaluate IFNs were raised. To address the potential that anti-Ebola virus activity was overlooked, type I and type II IFNs (α-2a, α-2b, -ß, -γ, and -universal) were tested in a variety of cell types (Vero E6, Huh 7 cells, and human macrophages). IFNs are weak inhibitors of Ebola virus Makona in these cell lines.
Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Interferon beta/farmacologia , Interferon gama/farmacologia , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Sinergismo Farmacológico , Humanos , Células VeroRESUMO
Outbreaks of filoviruses, such as those caused by the Ebola (EBOV) and Marburg (MARV) virus, are difficult to detect and control. The initial clinical symptoms of these diseases are nonspecific and can mimic other endemic pathogens. This makes confident diagnosis based on clinical symptoms alone impossible. Molecular diagnostics for these diseases that rely on the detection of viral RNA in the blood are only effective after significant disease progression. As an approach to identify these infections earlier in the disease course, we tested the effectiveness of viral RNA detection combined with an assessment of sentinel host mRNAs that are upregulated following filovirus infection. RNAseq analysis of EBOV-infected nonhuman primates identified host RNAs that are upregulated at early stages of infection. NanoString probes that recognized these host-response RNAs were combined with probes that recognized viral RNA and were used to classify viral infection both prior to viremia and postviremia. This approach was highly successful at identifying samples from nonhuman primate subjects and correctly distinguished the causative agent in a previremic stage in 10 EBOV and 5 MARV samples. This work suggests that unified host response/viral fingerprint assays can enable diagnosis of disease earlier than testing for viral nucleic acid alone, which could decrease transmission events and increase therapeutic effectiveness.IMPORTANCE Current molecular tests that identify infection with high-consequence viruses such as Ebola virus and Marburg virus are based on the detection of virus material in the blood. These viruses do not undergo significant early replication in the blood and, instead, replicate in organs such as the liver and spleen. Thus, virus begins to accumulate in the blood only after significant replication has already occurred in those organs, making viremia an indicator of infection only after initial stages have become established. Here, we show that a multianalyte assay can correctly identify the infectious agent in nonhuman primates (NHPs) prior to viremia through tracking host infection response transcripts. This illustrates that a single-tube, sample-to-answer format assay could be used to advance the time at which the type of infection can be determined and thereby improve outcomes.
Assuntos
Genoma Viral , Doença pelo Vírus Ebola/diagnóstico , Interações Hospedeiro-Patógeno/genética , Doença do Vírus de Marburg/diagnóstico , RNA Viral/isolamento & purificação , Transcriptoma , Animais , Ebolavirus/genética , Doença pelo Vírus Ebola/virologia , Humanos , Macaca , Doença do Vírus de Marburg/virologia , Marburgvirus/genética , Análise em Microsséries , Proteínas Virais/sangue , Proteínas Virais/genética , ViremiaRESUMO
During the Ebola virus disease (EVD) epidemic in Western Africa (2013â2016), antimalarial treatment was administered to EVD patients due to the high coexisting malaria burden in accordance with World Health Organization guidelines. In an Ebola treatment center in Liberia, EVD patients receiving the combination antimalarial artesunate-amodiaquine had a lower risk of death compared to those treated with artemether-lumefantrine. As artemether and artesunate are derivatives of artemisinin, the beneficial anti-Ebola virus (EBOV) effect observed could possibly be attributed to the change from lumefantrine to amodiaquine. Amodiaquine is a widely used antimalarial in the countries that experience outbreaks of EVD and, therefore, holds promise as an approved drug that could be repurposed for treating EBOV infections. We investigated the potential anti-EBOV effect of amodiaquine in a well-characterized nonhuman primate model of EVD. Using a similar 3-day antimalarial dosing strategy as for human patients, plasma concentrations of amodiaquine in healthy animals were similar to those found in humans. However, the treatment regimen did not result in a survival benefit or decrease of disease signs in EBOV-infected animals. While amodiaquine on its own failed to demonstrate efficacy, we cannot exclude potential therapeutic value of amodiaquine when used in combination with artesunate or another antiviral.
Assuntos
Amodiaquina/uso terapêutico , Antivirais/uso terapêutico , Artemisininas/uso terapêutico , Doença pelo Vírus Ebola/tratamento farmacológico , Animais , Modelos Animais de Doenças , Combinação de Medicamentos , Feminino , Macaca mulatta , MasculinoRESUMO
Ebolaviruses cause an often rapidly fatal syndrome known as Ebola virus disease (EVD), with average case fatality rates of ~50%. There is no licensed vaccine or treatment for EVD, underscoring the urgent need to develop new anti-ebolavirus agents, especially in the face of an ongoing outbreak in the Democratic Republic of the Congo and the largest ever outbreak in Western Africa in 2013-2016. Lectins have been investigated as potential antiviral agents as they bind glycans present on viral surface glycoproteins, but clinical use of them has been slowed by concerns regarding their mitogenicity, i.e. ability to cause immune cell proliferation. We previously engineered a banana lectin (BanLec), a carbohydrate-binding protein, such that it retained antiviral activity but lost mitogenicity by mutating a single amino acid, yielding H84T BanLec (H84T). H84T shows activity against viruses containing high-mannose N-glycans, including influenza A and B, HIV-1 and -2, and hepatitis C virus. Since ebolavirus surface glycoproteins also contain many high-mannose N-glycans, we assessed whether H84T could inhibit ebolavirus replication. H84T inhibited Ebola virus (EBOV) replication in cell cultures. In cells, H84T inhibited both virus-like particle (VLP) entry and transcription/replication of the EBOV mini-genome at high micromolar concentrations, while inhibiting infection by transcription- and replication-competent VLPs, which measures the full viral life cycle, in the low micromolar range. H84T did not inhibit assembly, budding, or release of VLPs. These findings suggest that H84T may exert its anti-ebolavirus effect(s) by blocking both entry and transcription/replication. In a mouse model, H84T partially (maximally, ~50-80%) protected mice from an otherwise lethal mouse-adapted EBOV infection. Interestingly, a single dose of H84T pre-exposure to EBOV protected ~80% of mice. Thus, H84T shows promise as a new anti-ebolavirus agent with potential to be used in combination with vaccination or other agents in a prophylactic or therapeutic regimen.