Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
PLoS Genet ; 17(1): e1009302, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444353

RESUMO

Human skin is continuously exposed to environmental DNA damage leading to the accumulation of somatic mutations over the lifetime of an individual. Mutagenesis in human skin cells can be also caused by endogenous DNA damage and by DNA replication errors. The contributions of these processes to the somatic mutation load in the skin of healthy humans has so far not been accurately assessed because the low numbers of mutations from current sequencing methodologies preclude the distinction between sequencing errors and true somatic genome changes. In this work, we sequenced genomes of single cell-derived clonal lineages obtained from primary skin cells of a large cohort of healthy individuals across a wide range of ages. We report here the range of mutation load and a comprehensive view of the various somatic genome changes that accumulate in skin cells. We demonstrate that UV-induced base substitutions, insertions and deletions are prominent even in sun-shielded skin. In addition, we detect accumulation of mutations due to spontaneous deamination of methylated cytosines as well as insertions and deletions characteristic of DNA replication errors in these cells. The endogenously induced somatic mutations and indels also demonstrate a linear increase with age, while UV-induced mutation load is age-independent. Finally, we show that DNA replication stalling at common fragile sites are potent sources of gross chromosomal rearrangements in human cells. Thus, somatic mutations in skin of healthy individuals reflect the interplay of environmental and endogenous factors in facilitating genome instability and carcinogenesis.


Assuntos
Dano ao DNA/efeitos da radiação , Metilação de DNA/genética , Replicação do DNA/genética , Pele/efeitos da radiação , Metilação de DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Replicação do DNA/efeitos da radiação , Fibroblastos/efeitos da radiação , Genoma Humano/genética , Genoma Humano/efeitos da radiação , Instabilidade Genômica/efeitos da radiação , Genômica/métodos , Humanos , Mutação INDEL/efeitos da radiação , Melanócitos/efeitos da radiação , Mutagênese/genética , Mutagênese/efeitos da radiação , Pele/metabolismo , Raios Ultravioleta/efeitos adversos
2.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791569

RESUMO

Early detection of neurological conditions is critical for timely diagnosis and treatment. Identifying cellular-level changes is essential for implementing therapeutic interventions prior to symptomatic disease onset. However, monitoring brain tissue directly through biopsies is invasive and poses a high risk. Bodily fluids such as blood or cerebrospinal fluid contain information in many forms, including proteins and nucleic acids. In particular, cell-free DNA (cfDNA) has potential as a versatile neurological biomarker. Yet, our knowledge of cfDNA released by brain tissue and how cfDNA changes in response to deleterious events within the brain is incomplete. Mapping changes in cfDNA to specific cellular events is difficult in vivo, wherein many tissues contribute to circulating cfDNA. Organoids are tractable systems for examining specific changes consistently in a human background. However, few studies have investigated cfDNA released from organoids. Here, we examined cfDNA isolated from cerebral organoids. We found that cerebral organoids release quantities of cfDNA sufficient for downstream analysis with droplet-digital PCR and whole-genome sequencing. Further, gene ontology analysis of genes aligning with sequenced cfDNA fragments revealed associations with terms related to neurodevelopment and autism spectrum disorder. We conclude that cerebral organoids hold promise as tools for the discovery of cfDNA biomarkers related to neurodevelopmental and neurological disorders.


Assuntos
Encéfalo , Ácidos Nucleicos Livres , Organoides , Organoides/metabolismo , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Humanos , Encéfalo/metabolismo , Biomarcadores , Sequenciamento Completo do Genoma/métodos
3.
Toxicol Pathol ; 51(1-2): 39-55, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37009983

RESUMO

Antimony trioxide (AT) is used as a flame retardant in fabrics and plastics. Occupational exposure in miners and smelters is mainly through inhalation and dermal contact. Chronic inhalation exposure to AT particulates in B6C3F1/N mice and Wistar Han rats resulted in increased incidences and tumor multiplicities of alveolar/bronchiolar carcinomas (ABCs). In this study, we demonstrated Kras (43%) and Egfr (46%) hotspot mutations in mouse lung tumors (n = 80) and only Egfr (50%) mutations in rat lung tumors (n = 26). Interestingly, there were no differences in the incidences of these mutations in ABCs from rats and mice at exposure concentrations that did and did not exceed the pulmonary overload threshold. There was increased expression of p44/42 mitogen-activated protein kinase (MAPK) (Erk1/2) protein in ABCs harboring mutations in Kras and/or Egfr, confirming the activation of MAPK signaling. Transcriptomic analysis indicated significant alterations in MAPK signaling such as ephrin receptor signaling and signaling by Rho-family GTPases in AT-exposed ABCs. In addition, there was significant overlap between transcriptomic data from mouse ABCs due to AT exposure and human pulmonary adenocarcinoma data. Collectively, these data suggest chronic AT exposure exacerbates MAPK signaling in ABCs and, thus, may be translationally relevant to human lung cancers.


Assuntos
Adenocarcinoma Bronquioloalveolar , Neoplasias Pulmonares , Camundongos , Ratos , Humanos , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma Bronquioloalveolar/genética , Adenocarcinoma Bronquioloalveolar/patologia , Proteínas Quinases Ativadas por Mitógeno , Exposição por Inalação/efeitos adversos , Ratos Wistar , Camundongos Endogâmicos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Receptores ErbB/genética
4.
J Appl Toxicol ; 43(9): 1293-1305, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36908029

RESUMO

We recently developed a rat whole exome sequencing (WES) panel and used it to evaluate early somatic mutations in archival liver tissues from F344/N rats exposed to the hepatocarcinogen, Aflatoxin B1 (AFB1), a widely studied, potent mutagen and hepatocarcinogen associated with hepatocellular carcinoma (HCC). Rats were exposed to 1-ppm AFB1 in feed for 14, 90, and 90 days plus a recovery 60-day, non-exposure period (150-day) timepoint. Isolated liver DNA was exome sequenced. We identified 172 sequence variants across all timepoints, of which 101 were non-synonymous variants. Well-annotated genes carried a diverse set of 29 non-synonymous mutations at 14 days, increasing to 39 mutations at 90 days and then decreasing to 33 mutations following the 60-day recovery. Gene Set Enrichment Analysis conducted on previously reported, available RNA expression data of the same exome sequenced archival samples identified altered transcripts in pathways associated with malignant transformation. These included HALLMARK gene sets associated with cell proliferation (MYC Targets Version 1 and Version 2, E2F targets), cell cycle (G2M checkpoint, mitotic spindle), cell death (apoptosis), and DNA damage (DNA repair, UV response Up, Reactive oxygen species) pathways. DriverNet Impact analysis integrated exome-seq and expression data to reveal somatic mutations in Mcm8, Bdp1, and Cct6a that may drive cancer formation. Connectivity with transcript expression changes identified these genes as the top-ranked candidate driver genes associated with hepatocellular transformation. In conclusion, exome sequencing revealed early somatic mutations that may play a role in cancer cell transformation that are translatable to aflatoxin-induced HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratos , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Aflatoxina B1/toxicidade , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Exoma/genética , Ratos Endogâmicos F344 , Fígado/metabolismo , Transformação Celular Neoplásica/induzido quimicamente
5.
Int J Mol Sci ; 24(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37833956

RESUMO

Interstitial lung diseases (ILDs) are lethal lung diseases characterized by pulmonary inflammation and progressive lung interstitial scarring. We previously developed a mouse model of ILD using vanadium pentoxide (V2O5) and identified several gene candidates on chromosome 4 associated with pulmonary fibrosis. While these data indicated a significant genetic contribution to ILD susceptibility, they did not include any potential associations and interactions with the mitochondrial genome that might influence disease risk. To conduct this pilot work, we selected the two divergent strains we previously categorized as V2O5-resistant C57BL6J (B6) and -responsive DBA/2J (D2) and compared their mitochondrial genome characteristics, including DNA variants, heteroplasmy, lesions, and copy numbers at 14- and 112-days post-exposure. While we did not find changes in the mitochondrial genome at 14 days post-exposure, at 112 days, we found that the responsive D2 strain exhibited significantly fewer mtDNA copies and more lesions than control animals. Alongside these findings, mtDNA heteroplasmy frequency decreased. These data suggest that mice previously shown to exhibit increased susceptibility to pulmonary fibrosis and inflammation sustain damage to the mitochondrial genome that is evident at 112 days post-V2O5 exposure.


Assuntos
DNA Mitocondrial , Fibrose Pulmonar , Camundongos , Animais , DNA Mitocondrial/genética , Variações do Número de Cópias de DNA , Heteroplasmia , Camundongos Endogâmicos DBA
6.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762531

RESUMO

Renal proximal tubule epithelial cells (RPTECs) are a primary site for kidney injury. We created two RPTEC lines from CD-1 mice immortalized with hTERT (human telomerase reverse transcriptase) or SV40 LgT antigen (Simian Virus 40 Large T antigen). Our hypothesis was that low-level, repeated exposure to subcytotoxic levels of 0.25-2.5 µM cisplatin (CisPt) or 12.5-100 µM aflatoxin B1 (AFB1) would activate distinctive genes and pathways in these two differently immortalized cell lines. RNA-seq showed only LgT cells responded to AFB1 with 1139 differentially expressed genes (DEGs) at 72 h. The data suggested that AFB1 had direct nephrotoxic properties on the LgT cells. However, both the cell lines responded to 2.5 µM CisPt from 3 to 96 h expressing 2000-5000 total DEGs. For CisPt, the findings indicated a coordinated transcriptional program of injury signals and repair from the expression of immune receptors with cytokine and chemokine secretion for leukocyte recruitment; robust expression of synaptic and substrate adhesion molecules (SAMs) facilitating the expression of neural and hormonal receptors, ion channels/transporters, and trophic factors; and the expression of nephrogenesis transcription factors. Pathway analysis supported the concept of a renal repair transcriptome. In summary, these cell lines provide in vitro models for the improved understanding of repeated renal injury and repair mechanisms. High-throughput screening against toxicant libraries should provide a wider perspective of their capabilities in nephrotoxicity.


Assuntos
Células Epiteliais , Túbulos Renais Proximais , Humanos , Camundongos , Animais , RNA-Seq , Linhagem Celular , Túbulos Renais Proximais/metabolismo , Cisplatino/metabolismo
7.
J Biol Chem ; 297(6): 101358, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34756888

RESUMO

Preserving optimal mitochondrial function is critical in the heart, which is the most ATP-avid organ in the body. Recently, we showed that global deficiency of the nuclear receptor RORα in the "staggerer" mouse exacerbates angiotensin II-induced cardiac hypertrophy and compromises cardiomyocyte mitochondrial function. However, the mechanisms underlying these observations have not been defined previously. Here, we used pharmacological and genetic gain- and loss-of-function tools to demonstrate that RORα regulates cardiomyocyte mitophagy to preserve mitochondrial abundance and function. We found that cardiomyocyte mitochondria in staggerer mice with lack of functional RORα were less numerous and exhibited fewer mitophagy events than those in WT controls. The hearts of our novel cardiomyocyte-specific RORα KO mouse line demonstrated impaired contractile function, enhanced oxidative stress, increased apoptosis, and reduced autophagic flux relative to Cre(-) littermates. We found that cardiomyocyte mitochondria in "staggerer" mice with lack of functional RORα were upregulated by hypoxia, a classical inducer of mitophagy. The loss of RORα blunted mitophagy and broadly compromised mitochondrial function in normoxic and hypoxic conditions in vivo and in vitro. We also show that RORα is a direct transcriptional regulator of the mitophagy mediator caveolin-3 in cardiomyocytes and that enhanced expression of RORα increases caveolin-3 abundance and enhances mitophagy. Finally, knockdown of RORα impairs cardiomyocyte mitophagy, compromises mitochondrial function, and induces apoptosis, but these defects could be rescued by caveolin-3 overexpression. Collectively, these findings reveal a novel role for RORα in regulating mitophagy through caveolin-3 and expand our currently limited understanding of the mechanisms underlying RORα-mediated cardioprotection.


Assuntos
Caveolina 3/fisiologia , Mitocôndrias Cardíacas/fisiologia , Mitofagia/fisiologia , Miócitos Cardíacos/fisiologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/fisiologia , Animais , Camundongos , Mitocôndrias Cardíacas/metabolismo
8.
FASEB J ; 35(8): e21738, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34245615

RESUMO

The heavy metal Cadmium (Cd), a widespread environmental contaminant, poses serious hazards to human health and is considered a metallohormone and carcinogen. In women with uterine fibroids, there is a significant association between blood Cd levels and increased fibroid tumor size. The aim of this study was to determine if benign human uterine leiomyoma (fibroid) cells could be malignantly transformed in vitro by continuous Cd exposure and, if so, explore a molecular mechanism by which this could occur. We found when fibroid cells were exposed to 10 µM CdCl2 for 8 weeks, a robust and fast-growing Cd-Resistant Leiomyoma (CR-LM) cell culture was established. The CR-LM cells formed viable colonies in soft agar and had increased cytoplasmic glycogen aggregates, enhanced cell motility, a higher percentage of cells in G2/M phase, and increased expression of the proliferation marker Ki-67. NanoString analysis showed downregulation of genes encoding for extracellular matrix (ECM) components, such as collagens, fibronectins, laminins, and SLRP family proteins, whereas genes involved in ECM degradation (MMP1, MMP3, and MMP10) were significantly upregulated. A volcano plot showed that the top differentially genes favored cancer progression. Functional analysis by ingenuity pathway analysis predicted a significant inhibition of TGFB1 signaling, leading to enhanced proliferation and attenuated fibrosis. Prolonged Cd exposure altered phenotypic characteristics and dysregulated genes in fibroid cells predicative of progression towards a cancer phenotype. Therefore, continuous Cd exposure alters the benign characteristics of fibroid cells in vitro, and Cd exposure could possibly pose a health hazard for women with uterine fibroids.


Assuntos
Cádmio/toxicidade , Matriz Extracelular/metabolismo , Leiomioma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Neoplasias Uterinas/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Leiomioma/patologia , Neoplasias Uterinas/patologia
9.
Arch Toxicol ; 95(10): 3171-3190, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34468815

RESUMO

Rodent alveolar/bronchiolar carcinomas (ABC) that arise either spontaneously or due to chemical exposure are similar to a subtype of lung adenocarcinomas in humans. B6C3F1/N mice and F344/NTac rats exposed to cobalt metal dust (CMD) by inhalation developed ABCs in a dose dependent manner. In CMD-exposed mice, the incidence of Kras mutations in ABCs was 67% with 80% of those being G to T transversions on codon 12 suggesting a role of oxidative stress in the pathogenesis. In vitro studies, such as DMPO (5,5-dimethyl-1-pyrroline N-oxide) immune-spin trapping assay, and dihydroethidium (DHE) fluorescence assay on A549 and BEAS-2B cells demonstrated increased oxidative stress due to cobalt exposure. In addition, significantly increased 8-oxo-dG adducts were demonstrated by immunohistochemistry in lungs from mice exposed to CMD for 90 days. Furthermore, transcriptomic analysis on ABCs arising spontaneously or due to chronic CMD-exposure demonstrated significant alterations in canonical pathways related to MAPK signaling (IL-8, ErbB, Integrin, and PAK pathway) and oxidative stress (PI3K/AKT and Melatonin pathway) in ABCs from CMD-exposed mice. Oxidative stress can stimulate PI3K/AKT and MAPK signaling pathways. Nox4 was significantly upregulated only in CMD-exposed ABCs and NOX4 activation of PI3K/AKT can lead to increased ROS levels in human cancer cells. The gene encoding Ereg was markedly up-regulated in CMD-exposed mice. Oncogenic KRAS mutations have been shown to induce EREG overexpression. Collectively, all these data suggest that oxidative stress plays a significant role in CMD-induced pulmonary carcinogenesis in rodents and these findings may also be relevant in the context of human lung cancers.


Assuntos
Neoplasias Brônquicas/induzido quimicamente , Cobalto/toxicidade , Neoplasias Pulmonares/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Células A549 , Adenocarcinoma Bronquioloalveolar/induzido quimicamente , Adenocarcinoma Bronquioloalveolar/patologia , Animais , Neoplasias Brônquicas/patologia , Carcinogênese/induzido quimicamente , Linhagem Celular , Relação Dose-Resposta a Droga , Poeira , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Alvéolos Pulmonares/patologia , Ratos , Ratos Endogâmicos F344
10.
Proc Natl Acad Sci U S A ; 115(18): E4189-E4198, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29666266

RESUMO

Early transient developmental exposure to an endocrine active compound, diethylstilbestrol (DES), a synthetic estrogen, causes late-stage effects in the reproductive tract of adult mice. Estrogen receptor alpha (ERα) plays a role in mediating these developmental effects. However, the developmental mechanism is not well known in male tissues. Here, we present genome-wide transcriptome and DNA methylation profiling of the seminal vesicles (SVs) during normal development and after DES exposure. ERα mediates aberrations of the mRNA transcriptome in SVs of adult mice following neonatal DES exposure. This developmental exposure impacts differential diseases between male (SVs) and female (uterus) tissues when mice reach adulthood due to most DES-altered genes that appear to be tissue specific during mouse development. Certain estrogen-responsive gene changes in SVs are cell-type specific. DNA methylation dynamically changes during development in the SVs of wild-type (WT) and ERα-knockout (αERKO) mice, which increases both the loss and gain of differentially methylated regions (DMRs). There are more gains of DMRs in αERKO compared with WT. Interestingly, the methylation changes between the two genotypes are in different genomic loci. Additionally, the expression levels of a subset of DES-altered genes are associated with their DNA methylation status following developmental DES exposure. Taken together, these findings provide an important basis for understanding the molecular and cellular mechanism of endocrine-disrupting chemicals (EDCs), such as DES, during development in the male mouse tissues. This unique evidence contributes to our understanding of developmental actions of EDCs in human health.


Assuntos
Metilação de DNA/efeitos dos fármacos , Dietilestilbestrol/efeitos adversos , Receptor alfa de Estrogênio/metabolismo , Estrogênios não Esteroides/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Glândulas Seminais/metabolismo , Transcriptoma/efeitos dos fármacos , Animais , Metilação de DNA/genética , Dietilestilbestrol/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/genética , Estrogênios não Esteroides/farmacologia , Loci Gênicos , Masculino , Camundongos , Camundongos Knockout
11.
Toxicol Pathol ; 48(2): 338-349, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31826744

RESUMO

Human exposure to pentabromodiphenyl ether (PBDE) mixture (DE-71) and its PBDE-47 congener can occur both in utero and during lactation. Here, we tested the hypothesis that PBDE-induced neonatal hepatic transcriptomic alterations in Wistar Han rat pups can inform on potential toxicity and carcinogenicity after longer term PBDE exposures. Wistar Han rat dams were exposed to either DE-71 or PBDE-47 daily from gestation day (GD 6) through postnatal day 4 (PND 4). Total plasma thyroxine (T4) was decreased in PND 4 pups. In liver, transcripts for CYPs and conjugation enzymes, Nrf2, and ABC transporters were upregulated. In general, the hepatic transcriptomic alterations after exposure to DE-71 or PBDE-47 were similar and provided early indicators of oxidative stress and metabolic alterations, key characteristics of toxicity processes. The transcriptional benchmark dose lower confidence limits of the most sensitive biological processes were lower for PBDE-47 than for the PBDE mixture. Neonatal rat liver transcriptomic data provide early indicators on molecular pathway alterations that may lead to toxicity and/or carcinogenicity if the exposures continue for longer durations. These early toxicogenomic indicators may be used to help prioritize chemicals for a more complete toxicity and cancer risk evaluation.


Assuntos
Éteres Difenil Halogenados/toxicidade , Fígado/efeitos dos fármacos , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/patologia , Transcriptoma/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Feminino , Éteres Difenil Halogenados/sangue , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Ratos , Ratos Wistar
12.
Arch Toxicol ; 94(7): 2523-2541, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32306082

RESUMO

Ginkgo biloba extract (GBE) is used in traditional Chinese medicine as a herbal supplement for improving memory. Exposure of B6C3F1/N mice to GBE in a 2-year National Toxicology Program (NTP) bioassay resulted in a dose-dependent increase in hepatocellular carcinomas (HCC). To identify key microRNAs that modulate GBE-induced hepatocarcinogenesis, we compared the global miRNA expression profiles in GBE-exposed HCC (GBE-HCC) and spontaneous HCC (SPNT-HCC) with age-matched vehicle control normal livers (CNTL) from B6C3F1/N mice. The number of differentially altered miRNAs in GBE-HCC and SPNT-HCC was 74 (52 up and 22 down) and 33 (15 up and 18 down), respectively. Among the uniquely differentially altered miRNAs in GBE-HCC, miR-31 and one of its predicted targets, Cdk1 were selected for functional validation. A potential miRNA response element (MRE) in the 3'-untranslated regions (3'-UTR) of Cdk1 mRNA was revealed by in silico analysis and confirmed by luciferase assays. In mouse hepatoma cell line HEPA-1 cells, we demonstrated an inverse correlation between miR-31 and CDK1 protein levels, but no change in Cdk1 mRNA levels, suggesting a post-transcriptional effect. Additionally, a set of miRNAs (miRs-411, 300, 127, 134, 409-3p, and 433-3p) that were altered in the GBE-HCCs were also altered in non-tumor liver samples from the 90-day GBE-exposed group compared to the vehicle control group, suggesting that some of these miRNAs could serve as potential biomarkers for GBE exposure or hepatocellular carcinogenesis. These data increase our understanding of miRNA-mediated epigenetic regulation of GBE-mediated hepatocellular carcinogenesis in B6C3F1/N mice.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Transformação Celular Neoplásica/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , Extratos Vegetais/toxicidade , Transcriptoma , Regiões 3' não Traduzidas , Animais , Biomarcadores Tumorais/metabolismo , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/metabolismo , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ginkgo biloba , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , MicroRNAs/metabolismo , Fatores de Tempo
13.
Toxicol Pathol ; 46(5): 564-573, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29806545

RESUMO

There was a significant increase in the incidence of retinal degeneration in F344/N rats chronically exposed to Kava kava extract (KKE) in National Toxicology Program (NTP) bioassay. A retrospective evaluation of these rat retinas indicated a similar spatial and morphological alteration as seen in light-induced retinal degeneration in albino rats. Therefore, it was hypothesized that KKE has a potential to exacerbate the light-induced retinal degeneration. To investigate the early mechanism of retinal degeneration, we conducted a 90-day F344/N rat KKE gavage study at doses of 0 and 1.0 g/kg (dose which induced retinal degeneration in the 2-year NTP rat KKE bioassay). The morphological evaluation indicated reduced number of phagosomes in the retinal pigment epithelium (RPE) of the superior retina. Transcriptomic alterations related to retinal epithelial homeostasis and melatoninergic signaling were observed in microarray analysis. Phagocytosis of photoreceptor outer segment by the underlying RPE is essential to maintain the homeostasis of the photoreceptor layer and is regulated by melatonin signaling. Therefore, reduced photoreceptor outer segment disc shedding and subsequent lower number of phagosomes in the RPE and alterations in the melatonin pathway may have contributed to the increased incidences of retinal degeneration observed in F344/N rats in the 2-year KKE bioassay.


Assuntos
Kava/química , Fagocitose/efeitos dos fármacos , Fagossomos/efeitos dos fármacos , Extratos Vegetais/toxicidade , Degeneração Retiniana/induzido quimicamente , Pigmentos da Retina/metabolismo , Animais , Masculino , Fagossomos/ultraestrutura , Extratos Vegetais/isolamento & purificação , Ratos Endogâmicos F344 , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/ultraestrutura , Transcriptoma/efeitos dos fármacos
14.
Stem Cells ; 34(11): 2772-2783, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27350140

RESUMO

In this study, we identify a novel and essential role for the Krüppel-like zinc finger transcription factor GLI-similar 3 (GLIS3) in the regulation of postnatal spermatogenesis. We show that GLIS3 is expressed in gonocytes, spermatogonial stem cells (SSCs) and spermatogonial progenitors (SPCs), but not in differentiated spermatogonia and later stages of spermatogenesis or in somatic cells. Spermatogenesis is greatly impaired in GLIS3 knockout mice. Loss of GLIS3 function causes a moderate reduction in the number of gonocytes, but greatly affects the generation of SSCs/SPCs, and as a consequence the development of spermatocytes. Gene expression profiling demonstrated that the expression of genes associated with undifferentiated spermatogonia was dramatically decreased in GLIS3-deficient mice and that the cytoplasmic-to-nuclear translocation of FOXO1, which marks the gonocyte-to-SSC transition and is necessary for SSC self-renewal, is inhibited. These observations suggest that GLIS3 promotes the gonocyte-to-SSC transition and is a critical regulator of the dynamics of early postnatal spermatogenesis. Stem Cells 2016;34:2772-2783.


Assuntos
Proteínas Repressoras/genética , Espermatócitos/metabolismo , Espermatogênese/genética , Espermatogônias/metabolismo , Células-Tronco/metabolismo , Testículo/metabolismo , Transativadores/genética , Animais , Diferenciação Celular , Proteínas de Ligação a DNA , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico , Proteínas Repressoras/deficiência , Espermatócitos/citologia , Espermatogônias/citologia , Células-Tronco/citologia , Testículo/citologia , Transativadores/deficiência
15.
J Immunol ; 194(8): 3808-19, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25769922

RESUMO

Differential display of the integrins CD103 and CD11b are widely used to distinguish two major dendritic cell (DC) subsets in nonlymphoid tissues. CD103(+) DCs arise from FLT3-dependent DC precursors (preDCs), whereas CD11b(hi) DCs can arise either from preDCs or FLT3-independent monocytes. Functional characterization of these two lineages of CD11b(hi) DCs has been hindered by the lack of a widely applicable method to distinguish between them. We performed gene expression analysis of fractionated lung DCs from C57BL/6 mice and found that monocyte-derived DCs (moDCs), including CD11b(hi)Ly-6C(lo) tissue-resident and CD11b(hi)Ly-6C(hi) inflammatory moDCs, express the complement 5a receptor 1/CD88, whereas preDC-derived conventional DCs (cDCs), including CD103(+) and CD11b(hi) cDCs, express dipeptidyl peptidase-4/CD26. Flow cytometric analysis of multiple organs, including the kidney, liver, lung, lymph nodes, small intestine, and spleen, confirmed that reciprocal display of CD88 and CD26 can reliably distinguish FLT3-independent moDCs from FLT3-dependent cDCs in C57BL/6 mice. Similar results were obtained when DCs from BALB/c mice were analyzed. Using this novel approach to study DCs in mediastinal lymph nodes, we observed that most blood-derived lymph node-resident DCs, as well as tissue-derived migratory DCs, are cDCs. Furthermore, cDCs, but not moDCs, stimulated naive T cell proliferation. We anticipate that the use of Abs against CD88 and CD26 to distinguish moDCs and cDCs in multiple organs and mouse strains will facilitate studies aimed at assigning specific functions to distinct DC lineages in immune responses.


Assuntos
Proliferação de Células/fisiologia , Células Dendríticas/imunologia , Dipeptidil Peptidase 4/imunologia , Regulação da Expressão Gênica/imunologia , Monócitos/imunologia , Receptor da Anafilatoxina C5a/imunologia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Antígeno CD11b/genética , Antígeno CD11b/imunologia , Células Dendríticas/citologia , Dipeptidil Peptidase 4/genética , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Monócitos/citologia , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Receptor da Anafilatoxina C5a/genética , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/imunologia
16.
Arch Toxicol ; 91(4): 1685-1696, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27638505

RESUMO

N,N-dimethyl-p-toluidine (DMPT), an accelerant for methyl methacrylate monomers in medical devices, was a liver carcinogen in male and female F344/N rats and B6C3F1 mice in a 2-year oral exposure study. p-Toluidine, a structurally related chemical, was a liver carcinogen in mice but not in rats in an 18-month feed exposure study. In this current study, liver transcriptomic data were used to characterize mechanisms in DMPT and p-toluidine liver toxicity and for conducting benchmark dose (BMD) analysis. Male F344/N rats were exposed orally to DMPT or p-toluidine (0, 1, 6, 20, 60 or 120 mg/kg/day) for 5 days. The liver was examined for lesions and transcriptomic alterations. Both chemicals caused mild hepatic toxicity at 60 and 120 mg/kg and dose-related transcriptomic alterations in the liver. There were 511 liver transcripts differentially expressed for DMPT and 354 for p-toluidine at 120 mg/kg/day (false discovery rate threshold of 5 %). The liver transcriptomic alterations were characteristic of an anti-oxidative damage response (activation of the Nrf2 pathway) and hepatic toxicity. The top cellular processes in gene ontology (GO) categories altered in livers exposed to DMPT or p-toluidine were used for BMD calculations. The lower confidence bound benchmark doses for these chemicals were 2 mg/kg/day for DMPT and 7 mg/kg/day for p-toluidine. These studies show the promise of using 5-day target organ transcriptomic data to identify chemical-induced molecular changes that can serve as markers for preliminary toxicity risk assessment.


Assuntos
Carcinógenos/toxicidade , Fígado/efeitos dos fármacos , Toluidinas/toxicidade , Animais , Carcinógenos/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Fígado/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Medição de Risco/métodos , Toluidinas/administração & dosagem , Transcriptoma/efeitos dos fármacos
17.
Am J Physiol Lung Cell Mol Physiol ; 311(2): L280-91, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27106289

RESUMO

Ozone is a common, potent oxidant pollutant in industrialized nations. Ozone exposure causes airway hyperreactivity, lung hyperpermeability, inflammation, and cell damage in humans and laboratory animals, and exposure to ozone has been associated with exacerbation of asthma, altered lung function, and mortality. The mechanisms of ozone-induced lung injury and differential susceptibility are not fully understood. Ozone-induced lung inflammation is mediated, in part, by the innate immune system. We hypothesized that mannose-binding lectin (MBL), an innate immunity serum protein, contributes to the proinflammatory events caused by ozone-mediated activation of the innate immune system. Wild-type (Mbl(+/+)) and MBL-deficient (Mbl(-/-)) mice were exposed to ozone (0.3 ppm) for up to 72 h, and bronchoalveolar lavage fluid was examined for inflammatory markers. Mean numbers of eosinophils and neutrophils and levels of the neutrophil attractants C-X-C motif chemokines 2 [Cxcl2 (major intrinsic protein 2)] and 5 [Cxcl5 (limb expression, LIX)] in the bronchoalveolar lavage fluid were significantly lower in Mbl(-/-) than Mbl(+/+) mice exposed to ozone. Using genome-wide mRNA microarray analyses, we identified significant differences in transcript response profiles and networks at baseline [e.g., nuclear factor erythroid-related factor 2 (NRF2)-mediated oxidative stress response] and after exposure (e.g., humoral immune response) between Mbl(+/+) and Mbl(-/-) mice. The microarray data were further analyzed to discover several informative differential response patterns and subsequent gene sets, including the antimicrobial response and the inflammatory response. We also used the lists of gene transcripts to search the LINCS L1000CDS(2) data sets to identify agents that are predicted to perturb ozone-induced changes in gene transcripts and inflammation. These novel findings demonstrate that targeted deletion of Mbl caused differential levels of inflammation-related gene sets at baseline and after exposure to ozone and significantly reduced pulmonary inflammation, thus indicating an important innate immunomodulatory role of the gene in this model.


Assuntos
Poluentes Atmosféricos/toxicidade , Imunidade Inata , Lectina de Ligação a Manose/fisiologia , Ozônio/toxicidade , Pneumonia/imunologia , Animais , Ontologia Genética , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia/metabolismo , Mapas de Interação de Proteínas , Transcriptoma
18.
Toxicol Pathol ; 44(6): 835-47, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27099258

RESUMO

N, N-dimethyl-p-toluidine (DMPT; Cas No. 99-97-8), an accelerant for methyl methacrylate monomers in medical devices, is a nasal cavity carcinogen according to a 2-yr cancer study of male and female F344/N rats, with the nasal tumors arising from the transitional cell epithelium. In this study, we exposed male F344/N rats for 5 days to DMPT (0, 1, 6, 20, 60, or 120 mg/kg [oral gavage]) to explore the early changes in the nasal cavity after short-term exposure. Lesions occurred in the nasal cavity including hyperplasia of transitional cell epithelium (60 and 120 mg/kg). Nasal tissue was rapidly removed and preserved for subsequent laser capture microdissection and isolation of the transitional cell epithelium (0 and 120 mg/kg) for transcriptomic studies. DMPT transitional cell epithelium gene transcript patterns were characteristic of an antioxidative damage response (e.g., Akr7a3, Maff, and Mgst3), cell proliferation, and decrease in signals for apoptosis. The transcripts of amino acid transporters were upregulated (e.g., Slc7a11). The DMPT nasal transcript expression pattern was similar to that found in the rat nasal cavity after formaldehyde exposure, with over 1,000 transcripts in common. Molecular changes in the nasal cavity after DMPT exposure suggest that oxidative damage is a mechanism of the DMPT toxic and/or carcinogenic effects.


Assuntos
Carcinógenos/toxicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Cavidade Nasal/efeitos dos fármacos , Cavidade Nasal/patologia , Toluidinas/toxicidade , Animais , Masculino , Ratos , Ratos Endogâmicos F344 , Transcriptoma/efeitos dos fármacos
19.
Toxicol Pathol ; 44(1): 71-87, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26682919

RESUMO

Vinylidene chloride (VDC) has been widely used in the production of plastics and flame retardants. Exposure of B6C3F1 mice to VDC in the 2-year National Toxicology Program carcinogenicity bioassay resulted in a dose-dependent increases in renal cell hyperplasia, renal cell adenoma, and renal cell carcinomas (RCCs). Among those differentially expressed genes from controls and RCC of VDC-exposed mice, there was an overrepresentation of genes from pathways associated with chronic xenobiotic and oxidative stress as well as c-Myc overexpression and dysregulation of TP53 cell cycle checkpoint and DNA damage repair pathways in RCC. Trend analysis comparing RCC, VDC-exposed kidney, and chamber control kidney showed a conservation of pathway dysregulation in terms of overrepresentation of xenobiotic and oxidative stress, and DNA damage and cell cycle checkpoint pathways in both VDC-exposed kidney and RCC, suggesting that these mechanisms play a role in the pathogenesis of RCC in VDC-exposed mice.


Assuntos
Carcinoma de Células Renais , Dicloroetilenos/toxicidade , Neoplasias Renais , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Animais , Carcinoma de Células Renais/induzido quimicamente , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/fisiopatologia , Relação Dose-Resposta a Droga , Feminino , Perfilação da Expressão Gênica , Rim/efeitos dos fármacos , Rim/patologia , Neoplasias Renais/induzido quimicamente , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/fisiopatologia , Masculino , Camundongos , Mutação , Testes de Toxicidade Crônica , Proteína Supressora de Tumor p53/metabolismo
20.
Toxicol Pathol ; 43(8): 1114-26, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26289556

RESUMO

The cell of origin of hepatoblastoma (HB) in humans and mice is unknown; it is hypothesized to be a transformed hepatocyte, oval cell, or hepatic progenitor cell. In mice, current dogma is that HBs arise from preexisting hepatocellular neoplasms as a result of further neoplastic transformation. However, there is little evidence supporting this direct relationship. To better understand the relationship between hepatocellular carcinoma (HCC) and HB and determine molecular similarities between mouse and human HB, global gene expression analysis and targeted mutation analysis were performed using HB, HCC, and adjacent liver from the same animals in a recent National Toxicology Program bioassay. There were significant differences in Hras and Ctnnb1 mutation spectra, and by microarray, HBs showed dysregulation of embryonic development, stem cell pluripotency, and genomic imprinting compared to HCC. Meta-analysis showed similarities between HB, early mouse embryonic liver, and hepatocyte-derived stem/progenitor cells compared to HCC. Our data show that there are striking differences between HB and HCC and suggest that HB is a significantly different entity that may arise from a hepatic precursor cell. Furthermore, mouse HB is similar to the human disease at the pathway level and therefore is likely a relevant model for evaluating human cancer hazard.


Assuntos
Carcinoma Hepatocelular/genética , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Animais , Carcinoma Hepatocelular/metabolismo , Hepatoblastoma/metabolismo , Humanos , Imuno-Histoquímica , Fígado/química , Neoplasias Hepáticas/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Patologia Molecular , Toxicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA