Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614087

RESUMO

Chronic kidney disease (CKD) is a slow-developing, progressive deterioration of renal function. The final common pathway in the pathophysiology of CKD involves glomerular sclerosis, tubular atrophy and interstitial fibrosis. Transforming growth factor-beta (TGF-ß) stimulates the differentiation of fibroblasts towards myofibroblasts and the production of extracellular matrix (ECM) molecules, and thereby interstitial fibrosis. It has been shown that endoglin (ENG, CD105), primarily expressed in endothelial cells and fibroblasts, can function as a co-receptor of TGF signaling. In several human organs, endoglin tends to be upregulated when chronic damage and fibrosis is present. We hypothesize that endoglin is upregulated in renal interstitial fibrosis and plays a role in the progression of CKD. We first measured renal endoglin expression in biopsy samples obtained from patients with different types of CKD, i.e., IgA nephropathy, focal segmental glomerulosclerosis (FSGS), diabetic nephropathy (DN) and patients with chronic allograft dysfunction (CAD). We showed that endoglin is upregulated in CAD patients (p < 0.001) and patients with DN (p < 0.05), compared to control kidneys. Furthermore, the amount of interstitial endoglin expression correlated with eGFR (p < 0.001) and the amount of interstitial fibrosis (p < 0.001), independent of the diagnosis of the biopsies. Finally, we investigated in vitro the effect of endoglin overexpression in TGF-ß stimulated human kidney fibroblasts. Overexpression of endoglin resulted in an enhanced ACTA2, CCN2 and SERPINE1 mRNA response (p < 0.05). It also increased the mRNA and protein upregulation of the ECM components collagen type I (COL1A1) and fibronectin (FN1) (p < 0.05). Our results suggest that endoglin is an important mediator in the final common pathway of CKD and could be used as a possible new therapeutic target to counteract the progression towards end-stage renal disease (ESRD).


Assuntos
Nefropatias Diabéticas , Endoglina , Falência Renal Crônica , Insuficiência Renal Crônica , Humanos , Nefropatias Diabéticas/metabolismo , Endoglina/genética , Endoglina/metabolismo , Células Endoteliais/metabolismo , Fibrose , Rim/metabolismo , Falência Renal Crônica/patologia , Receptores de Fatores de Crescimento/metabolismo , Insuficiência Renal Crônica/metabolismo , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta/metabolismo
2.
Int J Mol Sci ; 21(20)2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33081058

RESUMO

Diabetic nephropathy (DN) is a complication of diabetes mellitus that can lead to proteinuria and a progressive decline in renal function. Endoglin, a co-receptor of TGF-ß, is known primarily for regulating endothelial cell function; however, endoglin is also associated with hepatic, cardiac, and intestinal fibrosis. This study investigates whether endoglin contributes to the development of interstitial fibrosis in DN. Kidney autopsy material from 80 diabetic patients was stained for endoglin and Sirius Red and scored semi-quantitatively. Interstitial endoglin expression was increased in samples with DN and was correlated with Sirius Red staining (p < 0.001). Endoglin expression was also correlated with reduced eGFR (p = 0.001), increased creatinine (p < 0.01), increased systolic blood pressure (p < 0.05), hypertension (p < 0.05), and higher IFTA scores (p < 0.001). Biopsy samples from DN patients were also co-immunostained for endoglin together with CD31, CD68, vimentin, or α-SMA Endoglin co-localized with both the endothelial marker CD31 and the myofibroblast marker α-SMA. Finally, we used shRNA to knockdown endoglin expression in a human kidney fibroblast cell line. We found that TGF-ß1 stimulation upregulated SERPINE1, CTGF, and ACTA2 mRNA and α-SMA protein, and that these effects were significantly reduced in fibroblasts after endoglin knockdown. Taken together, these data suggest that endoglin plays a role in the pathogenesis of interstitial fibrosis in DN.


Assuntos
Diferenciação Celular , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Endoglina/metabolismo , Matriz Extracelular/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Idoso , Autopsia , Biópsia , Linhagem Celular , Estudos de Coortes , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Rim/patologia , Masculino , Fosforilação , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima
3.
Am J Pathol ; 188(12): 2924-2935, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30248336

RESUMO

In diabetic nephropathy, differential expression of growth factors leads to vascular changes, including endothelial cell activation, monocyte infiltration, and inflammation. Endoglin plays an important role in endothelial function and is also associated with inflammation. In the kidney, vascular endoglin expression is increased in animal models of renal injury, where it contributes to disease severity, possibly by promoting endothelial cell activation and inflammation. Herein, we investigated whether endoglin expression is associated with diabetic nephropathy. In addition, we examined whether reducing endothelial endoglin expression in vitro affects endothelial cell activation and monocyte adhesion and, if so, which intracellular pathways are involved. Finally, we analyzed whether glomerular endoglin expression is correlated with endothelial cell activation in patients with diabetic nephropathy. Endoglin levels were significantly increased in mice with type 1 diabetes compared with control mice. Reducing endoglin expression in cultured endothelial cells significantly impaired the vascular endothelial growth factor-A-induced up-regulation of activation markers and monocyte adhesion. This was mediated by increased phosphorylation of Akt, thereby inhibiting activating transcription factor 2 phosphorylation, which regulates vascular cell adhesion molecule-1 (VCAM1) gene transcription in these cells. Last, endoglin colocalized with VCAM-1 in the glomeruli of diabetic patients, glomerular VCAM-1 expression was significantly increased in these patients, and this increase in VCAM-1 expression was correlated with increased glomerular endoglin expression. Thus, targeting endoglin function may have therapeutic value in patients at risk for diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/patologia , Endoglina/metabolismo , Endotélio Vascular/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Diabetes Mellitus Tipo 1/complicações , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Endoglina/genética , Endotélio Vascular/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Molécula 1 de Adesão de Célula Vascular/genética , Fator A de Crescimento do Endotélio Vascular/genética
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167186, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642778

RESUMO

TGF-ß is considered an important cytokine in the development of interstitial fibrosis in chronic kidney disease. The TGF-ß co-receptor endoglin (ENG) tends to be upregulated in kidney fibrosis. ENG has two membrane bound isoforms generated via alternative splicing. Long-ENG was shown to enhance the extent of renal fibrosis in an unilateral ureteral obstruction mouse model, while short-ENG inhibited renal fibrosis. Here we aimed to achieve terminal intron retention of endoglin using antisense-oligo nucleotides (ASOs), thereby shifting the ratio towards short-ENG to inhibit the TGF-ß1-mediated pro-fibrotic response. We isolated mRNA from kidney biopsies of patients with chronic allograft disease (CAD) (n = 12) and measured total ENG and short-ENG mRNA levels. ENG mRNA was upregulated 2.3 fold (p < 0.05) in kidneys of CAD patients compared to controls, while the percentage short-ENG of the total ENG mRNA was significantly lower (1.8 fold; p < 0.05). Transfection of ASOs that target splicing regulatory sites of ENG into TK173 fibroblasts led to higher levels of short-ENG (2 fold; p < 0.05). In addition, we stimulated these cells with TGF-ß1 and measured a decrease in upregulation of ACTA2, COL1A1 and FN1 mRNA levels, and protein expression of αSMA, collagen type I, and fibronectin. These results show a potential for ENG ASOs as a therapy to reduce interstitial fibrosis in CKD.


Assuntos
Endoglina , Fibrose , Íntrons , Rim , Oligonucleotídeos Antissenso , Fator de Crescimento Transformador beta1 , Humanos , Endoglina/metabolismo , Endoglina/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/genética , Íntrons/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Rim/metabolismo , Rim/patologia , Masculino , Fibronectinas/metabolismo , Fibronectinas/genética , Feminino , Actinas/metabolismo , Actinas/genética , Pessoa de Meia-Idade , Animais , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Processamento Alternativo , Fibroblastos/metabolismo , Fibroblastos/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Camundongos , Linhagem Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA