Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 365: 121695, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38968891

RESUMO

Pyric herbivory, the combination of controlled burning and targeted grazing, is an effective strategy for restoring abandoned, shrub-encroached rangelands to open ecosystems. This practice may impact soil nitrogen pools by altering soil nitrification and denitrification rates, and may lead to an increase of nitrogen losses through nitrate leaching and N-gas emissions. This research, located in the south-western Pyrenees, investigated the effects of pyric herbivory on soil nitrification and denitrification potentials and mineral nitrogen content in a gorse-encroached temperate rangeland six months after the burning was implemented. The study included three treatments: high-severity burning plus grazing, low-severity burning plus grazing, and unburned and ungrazed areas (control). We measured soil nitrification and denitrification potentials (net and gross), the limitation of denitrifiers by nitrogen or organic carbon, and the abundance of nitrite- and nitrous oxide-reducing bacteria. Additional soil and vegetation data complemented these measurements. Results showed that pyric herbivory did not significantly affect nitrification potential, which was low and highly variable. However, it decreased gross denitrification potential and nitrous oxide reduction to dinitrogen in high-severely burned areas compared to the control. Denitrification rates directly correlated with microbial biomass nitrogen, soil organic carbon, soil water content and abundance of nirS-harbouring bacteria. Contrary to the expected, soil nitrate availability did not directly influence denitrification despite being highest in burned areas. Overall, the study suggests that pyric herbivory does not significantly affect mid-term nitrification rates in temperate open ecosystems, but may decrease denitrification rates in intensely burned areas. These findings highlight the importance of assessing the potential impacts of land management practices, such as pyric herbivory, on soil nutrient cycling and ecosystem functioning.


Assuntos
Desnitrificação , Pradaria , Herbivoria , Nitratos , Solo , Solo/química , Nitratos/metabolismo , Nitratos/análise , Nitrogênio/metabolismo , Nitrificação , Animais
2.
J Exp Bot ; 72(4): 1166-1180, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33080022

RESUMO

Although widely used in ecology, trait-based approaches are seldom used to study agroecosystems. In particular, there is a need to evaluate how functional trait variability among varieties of a crop species compares to the variability among wild plant species and how variety selection can modify trait syndromes. Here, we quantified 18 above- and below-ground functional traits for 57 varieties of common wheat representative of different modern selection histories. We compared trait variability among varieties and among Pooideae species, and analyzed the effect of selection histories on trait values and trait syndromes. For traits under strong selection, trait variability among varieties was less than 10% of the variability observed among Pooideae species. However, for traits not directly selected, such as root N uptake capacity, the variability was up to 75% of the variability among Pooideae species. Ammonium absorption capacity by roots was counter-selected for conventional varieties compared with organic varieties and landraces. Artificial selection also altered some trait syndromes classically reported for Pooideae. Identifying traits that have high or low variability among varieties and characterizing the hidden effects of selection on trait values and syndromes will benefit the selection of varieties to be used especially for lower N input agroecosystems.


Assuntos
Ecologia , Triticum , Fenótipo , Síndrome , Triticum/genética
3.
FEMS Microbiol Ecol ; 100(11)2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39327012

RESUMO

The Asian tiger mosquito Aedes albopictus is well adapted to urban environments and takes advantage of the artificial containers that proliferate in anthropized landscapes. Little is known about the physicochemical, pollutant, and microbiota compositions of Ae. albopictus-colonized aquatic habitats and whether these properties differ with noncolonized habitats. We specifically addressed this question in French community gardens by investigating whether pollution gradients (characterized either by water physicochemical properties combined with pollution variables or by the presence of organic molecules in water) influence water microbial composition and then the presence/absence of Ae. albopictus mosquitoes. Interestingly, we showed that the physicochemical and microbial compositions of noncolonized and colonized waters did not significantly differ, with the exception of N2O and CH4 concentrations, which were higher in noncolonized water samples. Moreover, the microbial composition of larval habitats covaried differentially along the pollution gradients according to colonization status. This study opens new avenues on the impact of pollution on mosquito habitats in urban areas and raises questions on the influence of biotic and abiotic interactions on adult life-history traits and their ability to transmit pathogens to humans.


Assuntos
Aedes , Ecossistema , Larva , Microbiota , Animais , Aedes/microbiologia , Aedes/crescimento & desenvolvimento , Larva/microbiologia , Larva/crescimento & desenvolvimento , Jardins , Cidades , França , Microbiologia da Água
4.
Ecol Evol ; 11(15): 9958-9969, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34367552

RESUMO

Savannas are characterized by the coexistence of grasses and trees. Fires are critical for their coexistence, because they decrease the survival of tree seedlings and saplings and their recruitment to the adult stage. In some humid savannas, perennial grasses inhibit nitrification and trees stimulate nitrification, which likely favors coexistence between trees and grasses. However, fires may influence plant capacity to control nitrogen cycling, which could subsequently influence tree-grass coexistence and savanna nitrogen budget. Therefore, we sampled soil in a humid savanna of Ivory Coast under the dominant nitrification-inhibiting grass species and the dominant nitrification-stimulating tree species and under bare soil before and after (i.e., 5 days) fire during the long dry season. We quantified the total microbial and nitrifier abundances and transcriptional activities and the nitrification enzyme activity. Fire decreased soil water content, probably by increasing evaporation and, maybe, by triggering the growth of grasses, and increased soil ammonium availability likely due to ash deposition and increased mineralization. Fire did not impact the total archaeal, bacterial, or fungal abundances, or that of the nitrifiers. Fire did not impact archaeal transcriptional activity and increased bacterial and fungal total transcriptional activities. In contrast, fire decreased the archaeal nitrifier transcriptional activities and the nitrification enzymatic activity, likely due to the often reported resumption of the growth of nitrification-inhibiting grasses quickly after the fire (and the subsequent increase in root exudation). These results pave the way for a better understanding of the short-term effects of fire on nitrogen cycling and tree-grass competition for nitrogen.

5.
Front Microbiol ; 9: 3337, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30697204

RESUMO

Mangrove forests are coastal ecosystems continuously affected by various environmental stresses and organized along constraint gradients perpendicular to the coastline. The aim of this study was to evaluate the resistance and resilience of sediment microbial communities in contrasted vegetation facies, during and after exposure to an anthropic disturbance. Our hypothesis was that microbial communities should be the most stable in the facies where the consequences of the anthropic disturbance are the most similar to those of natural disturbances. To test this, we focused on communities involved in N-cycle. We used an in situ experimental system set up in Mayotte Island where 2 zones dominated by different mangrove trees are daily exposed since 2008 to pretreated domestic wastewater (PW) discharges. These freshwater and nutrients inputs should increase microbial activities and hence the anoxia of sediments. We monitored during 1 year the long-term impact of this disturbance, its short-term impact and the resilience of microbial communities on plots where PW discharges were interrupted. Microorganism densities were estimated by qPCR, the nitrification (NEA) and denitrification (DEA) enzyme activities were evaluated by potential activity measurements and pigment analyses were performed to assess the composition of microbial photosynthetic communities. At long-term PW discharges significantly modified the structure of phototrophic communities and increased the total density of bacteria, the density of denitrifying bacteria and DEA. Similar effects were observed at short-term, notably in the facies dominated by Ceriops tagal. The results showed a partial resilience of microbial communities. This resilience was faster in the facies dominated by Rhizophora mucronata, which is more subjected to tides and sediment anoxia. The higher stability of microbial communities in this facies confirms our hypothesis. Such information should be taken into account in mangrove utilization and conservation policies.

6.
Front Microbiol ; 9: 3102, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619181

RESUMO

Metal-oxide nanoparticles (NPs) such as copper oxide (CuO) NPs offer promising perspectives for the development of novel agro-chemical formulations of pesticides and fertilizers. However, their potential impact on agro-ecosystem functioning still remains to be investigated. Here, we assessed the impact of CuO-NPs (0.1, 1, and 100 mg/kg dry soil) on soil microbial activities involved in the carbon and nitrogen cycles in five contrasting agricultural soils in a microcosm experiment over 90 days. Additionally, in a pot experiment, we evaluated the influence of plant presence on the toxicity of CuO-NPs on soil microbial activities. CuO-NPs caused significant reductions of the three microbial activities measured (denitrification, nitrification, and soil respiration) at 100 mg/kg dry soil, but the low concentrations (0.1 and 1 mg/kg) had limited effects. We observed that denitrification was the most sensitive microbial activity to CuO-NPs in most soil types, while soil respiration and nitrification were mainly impacted in coarse soils with low organic matter content. Additionally, large decreases in heterotrophic microbial activities were observed in soils planted with wheat, even at 1 mg/kg for soil substrate-induced respiration, indicating that plant presence did not mitigate or compensate CuO-NP toxicity for microorganisms. These two experiments show that CuO-NPs can have detrimental effects on microbial activities in soils with contrasting physicochemical properties and previously exposed to various agricultural practices. Moreover, we observed that the negative effects of CuO-NPs increased over time, indicating that short-term studies (hours, days) may underestimate the risks posed by these contaminants in soils.

7.
Sci Rep ; 7(1): 8411, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827706

RESUMO

Maize inoculation by Azospirillum stimulates root growth, along with soil nitrogen (N) uptake and root carbon (C) exudation, thus increasing N use efficiency. However, inoculation effects on soil N-cycling microbial communities have been overlooked. We hypothesized that inoculation would (i) increase roots-nitrifiers competition for ammonium, and thus decrease nitrifier abundance; and (ii) increase roots-denitrifiers competition for nitrate and C supply to denitrifiers by root exudation, and thus limit or benefit denitrifiers depending on the resource (N or C) mostly limiting these microorganisms. We quantified (de)nitrifiers abundance and activity in the rhizosphere of inoculated and non-inoculated maize on 4 sites over 2 years, and ancillary soil variables. Inoculation effects on nitrification and nitrifiers (AOA, AOB) were not consistent between the three sampling dates. Inoculation influenced denitrifiers abundance (nirK, nirS) differently among sites. In sites with high C limitation for denitrifiers (i.e. limitation of denitrification by C > 66%), inoculation increased nirS-denitrifier abundance (up to 56%) and gross N2O production (up to 84%), likely due to increased root C exudation. Conversely, in sites with low C limitation (<47%), inoculation decreased nirS-denitrifier abundance (down to -23%) and gross N2O production (down to -18%) likely due to an increased roots-denitrifiers competition for nitrate.


Assuntos
Azospirillum/crescimento & desenvolvimento , Carbono/análise , Interações Microbianas , Nitrogênio/análise , Microbiologia do Solo , Solo/química , Zea mays/microbiologia , Azospirillum/metabolismo , Desnitrificação , Nitrificação , Óxidos de Nitrogênio/metabolismo , Raízes de Plantas/microbiologia
8.
Sci Rep ; 7(1): 10275, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860500

RESUMO

The moist savanna zone covers 0.5 × 106 km2 in West Africa and is characterized by very low soil N levels limiting primary production, but the ecology of nitrifiers in these (agro)ecosystems is largely unknown. We compared the effects of six agricultural practices on nitrifier activity, abundance and diversity at nine sites in central Ivory Coast. Treatments, including repeated fertilization with ammonium and urea, had no effect on nitrification and crop N status after 3 to 5 crop cycles. Nitrification was actually higher at low than medium ammonium level. The nitrifying community was always dominated by ammonia oxidizing archaea and Nitrospira. However, the abundances of ammonia oxidizing bacteria, AOB, and Nitrobacter increased with fertilization after 5 crop cycles. Several AOB populations, some affiliated to Nitrosospira strains with urease activity or adapted to fluctuating ammonium levels, emerged in fertilized plots, which was correlated to nitrifying community ability to benefit from fertilization. In these soils, dominant nitrifiers adapted to very low ammonium levels have to be replaced by high-N nitrifiers before fertilization can stimulate nitrification. Our results show that the delay required for this replacement is much longer than ever observed for other terrestrial ecosystems, i.e. > 5 crop cycles, and demonstrate for the first time that nitrifier characteristics jeopardize the efficiency of fertilization in moist savanna soils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA