Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 245: 118049, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38169167

RESUMO

Climate change due to increased greenhouse gas emissions (GHG) in the atmosphere has been consistently observed since the mid-20th century. The profound influence of global climate change on greenhouse gas (GHG) emissions, encompassing carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), has established a vital feedback loop that contributes to further climate change. This intricate relationship necessitates a comprehensive understanding of the underlying feedback mechanisms. By examining the interactions between global climate change, soil, and GHG emissions, we can elucidate the complexities of CO2, CH4, and N2O dynamics and their implications. In this study, we evaluate the global climate change relationship with GHG globally in 246 countries. We find a robust positive association between climate and GHG emissions. By 2100, GHG emissions will increase in all G7 countries and China while decreasing in the United Kingdom based on current economic growth policies, resulting in a net global increase, suggesting that climate-driven increase in GHG and climate variations impact crop production loss due to soil impacts and not provide climate adaptation. The study highlights the diverse strategies employed by G7 countries in reducing GHG emissions, with France leveraging nuclear power, Germany focusing on renewables, and Italy targeting its industrial and transportation sectors. The UK and Japan are making significant progress in emission reduction through renewable energy, while the US and Canada face challenges due to their industrial activities and reliance on fossil fuels.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Dióxido de Carbono/análise , Agricultura , Solo , Produção Agrícola , Metano/análise , Óxido Nitroso , Efeito Estufa
2.
Sensors (Basel) ; 23(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37688086

RESUMO

In the realm of hyperspectral image classification, the pursuit of heightened accuracy and comprehensive feature extraction has led to the formulation of an advance architectural paradigm. This study proposed a model encapsulated within the framework of a unified model, which synergistically leverages the capabilities of three distinct branches: the swin transformer, convolutional neural network, and encoder-decoder. The main objective was to facilitate multiscale feature learning, a pivotal facet in hyperspectral image classification, with each branch specializing in unique facets of multiscale feature extraction. The swin transformer, recognized for its competence in distilling long-range dependencies, captures structural features across different scales; simultaneously, convolutional neural networks undertake localized feature extraction, engendering nuanced spatial information preservation. The encoder-decoder branch undertakes comprehensive analysis and reconstruction, fostering the assimilation of both multiscale spectral and spatial intricacies. To evaluate our approach, we conducted experiments on publicly available datasets and compared the results with state-of-the-art methods. Our proposed model obtains the best classification result compared to others. Specifically, overall accuracies of 96.87%, 98.48%, and 98.62% were obtained on the Xuzhou, Salinas, and LK datasets.

3.
Sensors (Basel) ; 23(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37631625

RESUMO

This paper presents a novel approach to reducing undesirable coupling in antenna arrays using custom-designed resonators and inverse surrogate modeling. To illustrate the concept, two standard patch antenna cells with 0.07λ edge-to-edge distance were designed and fabricated to operate at 2.45 GHz. A stepped-impedance resonator was applied between the antennas to suppress their mutual coupling. For the first time, the optimum values of the resonator geometry parameters were obtained using the proposed inverse artificial neural network (ANN) model, constructed from the sampled EM-simulation data of the system, and trained using the particle swarm optimization (PSO) algorithm. The inverse ANN surrogate directly yields the optimum resonator dimensions based on the target values of its S-parameters being the input parameters of the model. The involvement of surrogate modeling also contributes to the acceleration of the design process, as the array does not need to undergo direct EM-driven optimization. The obtained results indicate a remarkable cancellation of the surface currents between two antennas at their operating frequency, which translates into isolation as high as -46.2 dB at 2.45 GHz, corresponding to over 37 dB improvement as compared to the conventional setup.

4.
Sensors (Basel) ; 23(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37765797

RESUMO

The rapid advancements in technology have paved the way for innovative solutions in the healthcare domain, aiming to improve scalability and security while enhancing patient care. This abstract introduces a cutting-edge approach, leveraging blockchain technology and hybrid deep learning techniques to revolutionize healthcare systems. Blockchain technology provides a decentralized and transparent framework, enabling secure data storage, sharing, and access control. By integrating blockchain into healthcare systems, data integrity, privacy, and interoperability can be ensured while eliminating the reliance on centralized authorities. In conjunction with blockchain, hybrid deep learning techniques offer powerful capabilities for data analysis and decision making in healthcare. Combining the strengths of deep learning algorithms with traditional machine learning approaches, hybrid deep learning enables accurate and efficient processing of complex healthcare data, including medical records, images, and sensor data. This research proposes a permissions-based blockchain framework for scalable and secure healthcare systems, integrating hybrid deep learning models. The framework ensures that only authorized entities can access and modify sensitive health information, preserving patient privacy while facilitating seamless data sharing and collaboration among healthcare providers. Additionally, the hybrid deep learning models enable real-time analysis of large-scale healthcare data, facilitating timely diagnosis, treatment recommendations, and disease prediction. The integration of blockchain and hybrid deep learning presents numerous benefits, including enhanced scalability, improved security, interoperability, and informed decision making in healthcare systems. However, challenges such as computational complexity, regulatory compliance, and ethical considerations need to be addressed for successful implementation. By harnessing the potential of blockchain and hybrid deep learning, healthcare systems can overcome traditional limitations, promoting efficient and secure data management, personalized patient care, and advancements in medical research. The proposed framework lays the foundation for a future healthcare ecosystem that prioritizes scalability, security, and improved patient outcomes.


Assuntos
Blockchain , Aprendizado Profundo , Humanos , Segurança Computacional , Ecossistema , Atenção à Saúde , Registros Eletrônicos de Saúde
5.
Sensors (Basel) ; 23(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37571769

RESUMO

This study introduces a monopole 4 × 4 Ultra-Wide-Band (UWB) Multiple-Input Multiple-Output (MIMO) antenna system with a novel structure and outstanding performance. The proposed design has triple-notched characteristics due to CSRR etching and a C-shaped curve. The notching occurs in 4.5 GHz, 5.5 GHz, and 8.8 GHz frequencies in the C-band, WLAN band, and satellite network, respectively. Complementary Split-Ring Resonators (CSRR) are etched at the feed line and ground plane, and a C-shaped curve is used to reduce interference between the ultra-wide band and narrowband. The mutual coupling of CSRR enables the MIMO architecture to achieve high isolation and polarisation diversity. With prototype dimensions of (60.4 × 60.4) mm2, the proposed antenna design is small. The simulated and measured results show good agreement, indicating the effectiveness of the UWB-MIMO antenna for wireless communication and portable systems.

6.
Sensors (Basel) ; 23(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447872

RESUMO

Underwater wireless sensor networks (UWSNs) have gained prominence in wireless sensor technology, featuring resource-limited sensor nodes deployed in challenging underwater environments. To address challenges like power consumption, network lifetime, node deployment, topology, and propagation delays, cooperative transmission protocols like co-operative (Co-UWSN) and co-operative energy-efficient routing (CEER) have been proposed. These protocols utilize broadcast capabilities and neighbor head node (NHN) selection for cooperative routing. This research introduces NBEER, a novel neighbor-based energy-efficient routing protocol tailored for UWSNs. NBEER aims to surpass the limitations of Co-UWSN and CEER by optimizing NHNS and cooperative mechanisms to achieve load balancing and enhance network performance. Through comprehensive MATLAB simulations, we evaluated NBEER against Co-UWSN and CEER, demonstrating its superior performance across various metrics. NBEER significantly maximizes end-to-end delay, reduces energy consumption, improves packet delivery ratio, extends network lifetime, and enhances total received packets analysis compared to the existing protocols.


Assuntos
Benchmarking , Reprodução , Fenômenos Físicos , Tecnologia sem Fio
7.
Sensors (Basel) ; 22(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36559970

RESUMO

Artificial intelligence plays an essential role in diagnosing lung cancer. Lung cancer is notoriously difficult to diagnose until it has progressed to a late stage, making it a leading cause of cancer-related mortality. Lung cancer is fatal if not treated early, making this a significant issue. Initial diagnosis of malignant nodules is often made using chest radiography (X-ray) and computed tomography (CT) scans; nevertheless, the possibility of benign nodules leads to wrong choices. In their first phases, benign and malignant nodules seem very similar. Additionally, radiologists have a hard time viewing and categorizing lung abnormalities. Lung cancer screenings performed by radiologists are often performed with the use of computer-aided diagnostic technologies. Computer scientists have presented many methods for identifying lung cancer in recent years. Low-quality images compromise the segmentation process, rendering traditional lung cancer prediction algorithms inaccurate. This article suggests a highly effective strategy for identifying and categorizing lung cancer. Noise in the pictures was reduced using a weighted filter, and the improved Gray Wolf Optimization method was performed before segmentation with watershed modification and dilation operations. We used InceptionNet-V3 to classify lung cancer into three groups, and it performed well compared to prior studies: 98.96% accuracy, 94.74% specificity, as well as 100% sensitivity.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Humanos , Inteligência Artificial , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Algoritmos , Diagnóstico por Computador/métodos , Pulmão/patologia , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Sensibilidade e Especificidade
8.
Sensors (Basel) ; 22(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35632016

RESUMO

The Internet of Things (IoT) is a widely used technology in automated network systems across the world. The impact of the IoT on different industries has occurred in recent years. Many IoT nodes collect, store, and process personal data, which is an ideal target for attackers. Several researchers have worked on this problem and have presented many intrusion detection systems (IDSs). The existing system has difficulties in improving performance and identifying subcategories of cyberattacks. This paper proposes a deep-convolutional-neural-network (DCNN)-based IDS. A DCNN consists of two convolutional layers and three fully connected dense layers. The proposed model aims to improve performance and reduce computational power. Experiments were conducted utilizing the IoTID20 dataset. The performance analysis of the proposed model was carried out with several metrics, such as accuracy, precision, recall, and F1-score. A number of optimization techniques were applied to the proposed model in which Adam, AdaMax, and Nadam performance was optimum. In addition, the proposed model was compared with various advanced deep learning (DL) and traditional machine learning (ML) techniques. All experimental analysis indicates that the accuracy of the proposed approach is high and more robust than existing DL-based algorithms.


Assuntos
Internet das Coisas , Algoritmos , Aprendizado de Máquina , Redes Neurais de Computação
9.
Entropy (Basel) ; 23(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069994

RESUMO

To prevent disasters and to control and supervise crowds, automated video surveillance has become indispensable. In today's complex and crowded environments, manual surveillance and monitoring systems are inefficient, labor intensive, and unwieldy. Automated video surveillance systems offer promising solutions, but challenges remain. One of the major challenges is the extraction of true foregrounds of pixels representing humans only. Furthermore, to accurately understand and interpret crowd behavior, human crowd behavior (HCB) systems require robust feature extraction methods, along with powerful and reliable decision-making classifiers. In this paper, we describe our approach to these issues by presenting a novel Particles Force Model for multi-person tracking, a vigorous fusion of global and local descriptors, along with a robust improved entropy classifier for detecting and interpreting crowd behavior. In the proposed model, necessary preprocessing steps are followed by the application of a first distance algorithm for the removal of background clutter; true-foreground elements are then extracted via a Particles Force Model. The detected human forms are then counted by labeling and performing cluster estimation, using a K-nearest neighbors search algorithm. After that, the location of all the human silhouettes is fixed and, using the Jaccard similarity index and normalized cross-correlation as a cost function, multi-person tracking is performed. For HCB detection, we introduced human crowd contour extraction as a global feature and a particles gradient motion (PGD) descriptor, along with geometrical and speeded up robust features (SURF) for local features. After features were extracted, we applied bat optimization for optimal features, which also works as a pre-classifier. Finally, we introduced a robust improved entropy classifier for decision making and automated crowd behavior detection in smart surveillance systems. We evaluated the performance of our proposed system on a publicly available benchmark PETS2009 and UMN dataset. Experimental results show that our system performed better compared to existing well-known state-of-the-art methods by achieving higher accuracy rates. The proposed system can be deployed to great benefit in numerous public places, such as airports, shopping malls, city centers, and train stations to control, supervise, and protect crowds.

10.
PeerJ Comput Sci ; 10: e2000, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855256

RESUMO

Immersive technology, especially virtual reality (VR), transforms education. It offers immersive and interactive learning experiences. This study presents a systematic review focusing on VR's integration with educational theories in higher education. The review evaluates the literature on VR applications combined with pedagogical frameworks. It aims to identify effective strategies for enhancing educational experiences through VR. The process involved analyzing studies about VR and educational theories, focusing on methodologies, outcomes, and effectiveness. Findings show that VR improves learning outcomes when aligned with theories such as constructivism, experiential learning, and collaborative learning. These integrations offer personalized, immersive, and interactive learning experiences. The study highlights the importance of incorporating educational principles into VR application development. It suggests a promising direction for future research and implementation in education. This approach aims to maximize VR's pedagogical value, enhancing learning outcomes across educational settings.

11.
Front Cardiovasc Med ; 11: 1365481, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525188

RESUMO

The 2017 World Health Organization Fact Sheet highlights that coronary artery disease is the leading cause of death globally, responsible for approximately 30% of all deaths. In this context, machine learning (ML) technology is crucial in identifying coronary artery disease, thereby saving lives. ML algorithms can potentially analyze complex patterns and correlations within medical data, enabling early detection and accurate diagnosis of CAD. By leveraging ML technology, healthcare professionals can make informed decisions and implement timely interventions, ultimately leading to improved outcomes and potentially reducing the mortality rate associated with coronary artery disease. Machine learning algorithms create non-invasive, quick, accurate, and economical diagnoses. As a result, machine learning algorithms can be employed to supplement existing approaches or as a forerunner to them. This study shows how to use the CNN classifier and RNN based on the LSTM classifier in deep learning to attain targeted "risk" CAD categorization utilizing an evolving set of 450 cytokine biomarkers that could be used as suggestive solid predictive variables for treatment. The two used classifiers are based on these "45" different cytokine prediction characteristics. The best Area Under the Receiver Operating Characteristic curve (AUROC) score achieved is (0.98) for a confidence interval (CI) of 95; the classifier RNN-LSTM used "450" cytokine biomarkers had a great (AUROC) score of 0.99 with a confidence interval of 0.95 the percentage 95, the CNN model containing cytokines received the second best AUROC score (0.92). The RNN-LSTM classifier considerably beats the CNN classifier regarding AUROC scores, as evidenced by a p-value smaller than 7.48 obtained via an independent t-test. As large-scale initiatives to achieve early, rapid, reliable, inexpensive, and accessible individual identification of CAD risk gain traction, robust machine learning algorithms can now augment older methods such as angiography. Incorporating 65 new sensitive cytokine biomarkers can increase early detection even more. Investigating the novel involvement of cytokines in CAD could lead to better risk detection, disease mechanism discovery, and new therapy options.

12.
Sci Rep ; 14(1): 18422, 2024 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117650

RESUMO

This study explores integrating blockchain technology into the Internet of Medical Things (IoMT) to address security and privacy challenges. Blockchain's transparency, confidentiality, and decentralization offer significant potential benefits in the healthcare domain. The research examines various blockchain components, layers, and protocols, highlighting their role in IoMT. It also explores IoMT applications, security challenges, and methods for integrating blockchain to enhance security. Blockchain integration can be vital in securing and managing this data while preserving patient privacy. It also opens up new possibilities in healthcare, medical research, and data management. The results provide a practical approach to handling a large amount of data from IoMT devices. This strategy makes effective use of data resource fragmentation and encryption techniques. It is essential to have well-defined standards and norms, especially in the healthcare sector, where upholding safety and protecting the confidentiality of information are critical. These results illustrate that it is essential to follow standards like HIPAA, and blockchain technology can help ensure these criteria are met. Furthermore, the study explores the potential benefits of blockchain technology for enhancing inter-system communication in the healthcare industry while maintaining patient privacy protection. The results highlight the effectiveness of blockchain's consistency and cryptographic techniques in combining identity management and healthcare data protection, protecting patient privacy and data integrity. Blockchain is an unchangeable distributed ledger system. In short, the paper provides important insights into how blockchain technology may transform the healthcare industry by effectively addressing significant challenges and generating legal, safe, and interoperable solutions. Researchers, doctors, and graduate students are the audience for our paper.


Assuntos
Blockchain , Segurança Computacional , Confidencialidade , Internet das Coisas , Humanos , Internet
13.
Heliyon ; 10(2): e24403, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38304780

RESUMO

The HT-29 cell line, derived from human colon cancer, is valuable for biological and cancer research applications. Early detection is crucial for improving the chances of survival, and researchers are introducing new techniques for accurate cancer diagnosis. This study introduces an efficient deep learning-based method for detecting and counting colorectal cancer cells (HT-29). The colorectal cancer cell line was procured from a company. Further, the cancer cells were cultured, and a transwell experiment was conducted in the lab to collect the dataset of colorectal cancer cell images via fluorescence microscopy. Of the 566 images, 80 % were allocated to the training set, and the remaining 20 % were assigned to the testing set. The HT-29 cell detection and counting in medical images is performed by integrating YOLOv2, ResNet-50, and ResNet-18 architectures. The accuracy achieved by ResNet-18 is 98.70 % and ResNet-50 is 96.66 %. The study achieves its primary objective by focusing on detecting and quantifying congested and overlapping colorectal cancer cells within the images. This innovative work constitutes a significant development in overlapping cancer cell detection and counting, paving the way for novel advancements and opening new avenues for research and clinical applications. Researchers can extend the study by exploring variations in ResNet and YOLO architectures to optimize object detection performance. Further investigation into real-time deployment strategies will enhance the practical applicability of these models.

14.
Math Biosci Eng ; 21(3): 4165-4186, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38549323

RESUMO

In recent years, the extensive use of facial recognition technology has raised concerns about data privacy and security for various applications, such as improving security and streamlining attendance systems and smartphone access. In this study, a blockchain-based decentralized facial recognition system (DFRS) that has been designed to overcome the complexities of technology. The DFRS takes a trailblazing approach, focusing on finding a critical balance between the benefits of facial recognition and the protection of individuals' private rights in an era of increasing monitoring. First, the facial traits are segmented into separate clusters which are maintained by the specialized node that maintains the data privacy and security. After that, the data obfuscation is done by using generative adversarial networks. To ensure the security and authenticity of the data, the facial data is encoded and stored in the blockchain. The proposed system achieves significant results on the CelebA dataset, which shows the effectiveness of the proposed approach. The proposed model has demonstrated enhanced efficacy over existing methods, attaining 99.80% accuracy on the dataset. The study's results emphasize the system's efficacy, especially in biometrics and privacy-focused applications, demonstrating outstanding precision and efficiency during its implementation. This research provides a complete and novel solution for secure facial recognition and data security for privacy protection.


Assuntos
Blockchain , Aprendizado Profundo , Reconhecimento Facial , Humanos , Privacidade , Fenótipo
15.
PLoS One ; 19(9): e0309920, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39264948

RESUMO

Vehicular Adhoc Network (VANET) suffers from the loss of perilous data packets and disruption of links due to the fast movement of vehicles and dynamic network topology. Moreover, the reliability of the vehicular network is also threatened by malicious vehicles and messages. The malicious vehicle can promulgate fake messages to the node to misguide it, which may result in the loss of precious lives. In this situation, maintaining efficient, reliable, and secure communication among automobiles is of extreme importance, especially for a densely populated network. One of the remedies is vehicular clustering, which can effectively perform in a high-density network. However, secure cluster formation and cluster optimization are important factors to consider during the clustering process because non-optimal clusters may incur high end-to-end communication delays and produce overhead on the network. In addition, malicious nodes and packets reduce passenger and driver safety, increase road accidents, and waste passenger and driver time. To this end, we employ Arithmetic Optimization Algorithm (AOA) to design a secure intelligent clustering named AOACNET. AOA is used to achieve optimality of vehicular clusters. During cluster formation, the algorithm prevents unauthentic nodes from becoming cluster members by taking into consideration the performance value of each automobile. The vehicle's performance value is based on the record of data transmission. If a vehicle transmits a fake message, it will receive a penalty of (-1), and in the case of transmitting a legitimate message, a reward of (+1) will be assigned to the vehicle. Initially, all the vehicles have equal performance value which either increase or decrease based on communication with their peers. The vehicles will become cluster members only if their performance value is greater than the threshold value (0). AOACNET is tested in MATLAB using various evaluation metrics (i.e., number of clusters, load balancing, computational time, network overhead and delay). The simulation results show that the proposed algorithm performs up to 25% better than the similar contenders in terms of designated optimization objectives.


Assuntos
Algoritmos , Análise por Conglomerados , Redes de Comunicação de Computadores , Automóveis , Humanos
16.
Sci Rep ; 14(1): 22503, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39341995

RESUMO

The rapid evolution of power electronics has triggered an intensified focus on thermal management within electronics circuits, stemming from the critical necessity to mitigate thermal-related failure rates. Thermal management in power electronics circuits relies heavily on efficient heat transfer to prevent overheating of components and ensure their reliable operation, optimal performance, and safety. To facilitate the effective heat transfer, a thermal interface material (TIM) is utilized between switching components such as MOSFETs and heat sinks to improve surface contact, which increases heat transfer. In this research work, a novel thermal interface material (TIM) based on Tungsten-Gallium is introduced and evaluated to enhance thermal properties such as thermal conductivity and viscosity of Gallium-based TIM material with the addition of Tungsten microparticles. The study involves the examination of three distinct TIM samples with varying Tungsten content. Their surface morphology, composition, and topography were analyzed through techniques such as Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) within the context of a DC-DC boost converter. The results indicate that the addition of Tungsten significantly enhances TIM's viscosity and fluidity, even at high temperatures reaching up to 308 °C, which is crucial for power electronics circuits. In addition, thermal constant analyzer, and DC-DC converter circuit such as boost converter circuit were utilized for thermal and electrical characterization, respectively. These characterization results demonstrate that 10%/wt. addition of Tungsten can increase the thermal conductivity of Gallium from 13.1 to 22.82 W/m.K at room temperature, which represents an overall 74.2% increase in thermal conductivity. Furthermore, when the proposed TIM sample 2 was used in a boost converter circuit, the switching frequency of MOSFET IRF3808 was increased up to 20 kHz while the conduction losses were also lowest compared to other TIM samples.

17.
PLoS One ; 19(9): e0308796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39325757

RESUMO

Loss-less data compression becomes the need of the hour for effective data compression and computation in VLSI test vector generation and testing in addition to hardware AI/ML computations. Golomb code is one of the effective technique for lossless data compression and it becomes valid only when the divisor can be expressed as power of two. This work aims to increase compression ratio by further encoding the unary part of the Golomb Rice (GR) code so as to decrease the amount of bits used, it mainly focuses on optimizing the hardware for encoding side. The algorithm was developed and coded in Verilog and simulated using Modelsim. This code was then synthesised in Cadence Encounter RTL Synthesiser. The modifications carried out show around 6% to 19% reduction in bits used for a linearly distributed data set. Worst-case delays have been reduced by 3% to 8%. Area reduction varies from 22% to 36% for different methods. Simulation for Power consumption shows nearly 7% reduction in switching power. This ideally suggest the usage of Golomb Rice coding technique for test vector compression and data computation for multiple data types, which should ideally have a geometrical distribution.


Assuntos
Algoritmos , Compressão de Dados , Compressão de Dados/métodos , Computadores , Simulação por Computador , Oryza
18.
Adv Colloid Interface Sci ; 324: 103093, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38306848

RESUMO

With the increasing popularity of photocatalytic technology and the highly growing issues of energy scarcity and environmental pollution, there is an increasing interest in extremely efficient photocatalytic systems. The widespread immense attention and applicability of Nb2O5 photocatalysts can be attributed to their multiple benefits, including strong redox potentials, non-toxicity, earth abundance, corrosion resistance, and efficient thermal and chemical stability. However, the large-scale application of Nb2O5 is currently impeded by the barriers of rapid recombination loss of photo-activated electron/hole pairs and the inadequacy of visible light absorption. To overcome these constraints, plentiful design strategies have been directed at modulating the morphology, electronic band structure, and optical properties of Nb2O5. The current review offers an extensive analysis of Nb2O5-based photocatalysts, with a particular emphasis on crystallography, synthetic methods, design strategies, and photocatalytic mechanisms. Finally, an outline of future research directions and challenges in developing Nb2O5-based materials with excellent photocatalytic performance is presented.

19.
Comput Intell Neurosci ; 2023: 7282944, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37876944

RESUMO

Histopathological images are very effective for investigating the status of various biological structures and diagnosing diseases like cancer. In addition, digital histopathology increases diagnosis precision and provides better image quality and more detail for the pathologist with multiple viewing options and team annotations. As a result of the benefits above, faster treatment is available, increasing therapy success rates and patient recovery and survival chances. However, the present manual examination of these images is tedious and time-consuming for pathologists. Therefore, reliable automated techniques are needed to effectively classify normal and malignant cancer images. This paper applied a deep learning approach, namely, EfficientNet and its variants from B0 to B7. We used different image resolutions for each model, from 224 × 224 pixels to 600 × 600 pixels. We also applied transfer learning and parameter tuning techniques to improve the results and overcome the overfitting problem. We collected the dataset from the Lung and Colon Cancer Histopathological Image LC25000 image dataset. The dataset acquisition consists of 25,000 histopathology images of five classes (lung adenocarcinoma, lung squamous cell carcinoma, benign lung tissue, colon adenocarcinoma, and colon benign tissue). Then, we performed preprocessing on the dataset to remove the noisy images and bring them into a standard format. The model's performance was evaluated in terms of classification accuracy and loss. We have achieved good accuracy results for all variants; however, the results of EfficientNetB2 stand excellent, with an accuracy of 97% for 260 × 260 pixels resolution images.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Neoplasias Pulmonares , Humanos , Algoritmos , Neoplasias do Colo/patologia , Pulmão
20.
PeerJ Comput Sci ; 9: e1606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077573

RESUMO

The art of message masking is called steganography. Steganography keeps communication from being seen by any other person. In the domain of information concealment within images, numerous steganographic techniques exist. Digital photos stand out as prime candidates due to their widespread availability. This study seeks to develop a secure, high-capacity communication system that ensures private interaction while safeguarding information from the broader context. This study used the four least significant bits for steganography to hide the message in a secure way using a hash function. Before steganography, the message is encrypted using one of the encryption techniques: Caesar cipher or Vigenère cipher. By altering only the least significant bits (LSBs), the changes between the original and stego images remain invisible to the human eye. The proposed method excels in secret data capacity, featuring a high peak signal-to-noise ratio (PSNR) and low mean square error (MSE). This approach offers significant payload capacity and dual-layer security (encryption and steganography).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA