Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; : 1-17, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35950635

RESUMO

Food Traceability 4.0 (FT 4.0) is about tracing foods in the era of the fourth industrial revolution (Industry 4.0) with techniques and technologies reflecting this new revolution. Interest in food traceability has gained momentum in response to, among others events, the outbreak of the COVID-19 pandemic, reinforcing the need for digital food traceability that prevents food fraud and provides reliable information about food. This review will briefly summarize the most common conventional methods available to determine food authenticity before highlighting examples of emerging techniques that can be used to combat food fraud and improve food traceability. A particular focus will be on the concept of FT 4.0 and the significant role of digital solutions and other relevant Industry 4.0 innovations in enhancing food traceability. Based on this review, a possible new research topic, namely FT 4.0, is encouraged to take advantage of the rapid digitalization and technological advances occurring in the era of Industry 4.0. The main FT 4.0 enablers are blockchain, the Internet of things, artificial intelligence, and big data. Digital technologies in the age of Industry 4.0 have significant potential to improve the way food is traced, decrease food waste and reduce vulnerability to fraud opening new opportunities to achieve smarter food traceability. Although most of these emerging technologies are still under development, it is anticipated that future research will overcome current limitations making large-scale applications possible.

2.
Molecules ; 27(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35011365

RESUMO

Borage flower (Echium amoenum), an annual herb native to the Mediterranean region, is an excellent source of anthocyanins and is widely used in various forms due to its biological activities. In the present study, a choline chloride and glycerol (CHGLY)-based natural deep eutectic solvent (NADES) was applied in order to extract the anthocyanins from borage flowers. The traditional solvents, including water, methanol, and ethanol, were used to evaluate the efficiency of CHGLY. The results showed that CHGLY was highly efficient compared to the traditional solvents, providing the highest amounts of the total anthocyanin content (TAC), total phenolic content (TPC), total flavonoid content (TFC), individual anthocyanins, and antioxidant activity (DPPH radical scavenging (DPPH) and ferric-reducing antioxidant power (FRAP) assays). The most dominant anthocyanin found in studied borage was cyanidin-3-glucoside, followed by cyanin chloride, cyanidin-3-rutinoside, and pelargonidin-3-glucoside. The bioavailability % was 71.86 ± 0.47%, 77.29 ± 0.57%, 80.22 ± 0.65%, and 90.95 ± 1.01% for cyanidin-3-glucoside, cyanidin-3-rutinoside, by pelargonidin-3-glucoside and cyanin chloride, respectively. However, cyanidin-3-glucoside was the anthocyanin compound showing the highest stability (99.11 ± 1.66%) in the gastrointestinal environment. These results suggested that choline chloride and glycerol-based NADES is not only an efficient, eco-friendly solvent for the extraction of anthocyanins but can also be used to increase the bioavailability of anthocyanins.


Assuntos
Antocianinas/química , Borago/química , Extratos Vegetais/química , Antocianinas/análise , Cloretos/química , Colina/química , Solventes Eutéticos Profundos/química , Flores/química , Glicerol/química , Hidrólise , Oxirredução
3.
Foods ; 10(6)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208732

RESUMO

Cornsilk is maize waste containing phenolic compounds. In this study, freeze-drying, spray-drying, and microwave-drying techniques were evaluated for the encapsulation of cornsilk's phenolic compounds using maltodextrin as wall material. The results of antioxidant properties showed that freeze-drying was more efficient than microwave-drying and spray-drying techniques. The highest recovery of phenolic compounds was obtained with freeze-drying. The microstructure, DSC, and FTIR data showed that the encapsulation process was effective, and freeze-drying was the best drying technique. The physical properties of the microparticles greatly changed with the drying techniques. This study revealed that the phenolic compounds of the cornsilk extract can be successfully encapsulated and valorized.

4.
Foods ; 10(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34681335

RESUMO

Autumn olive fruits were osmo-dehydrated in sucrose solution at 70 °C under vacuum and atmospheric pressure. The mass transfer kinetics data were applied to the models of Azuara, Crank, Page, and Peleg. The Peleg model was the best-fitted model to predict the water loss and solid gain of both treatments. The vacuum application decreased the effective diffusivities from 2.19 × 10-10 to 1.55 × 10-10 m2·s-1 for water loss and from 0.72 × 10-10 to 0.62 × 10-10 m2·s-1 for sugar gain. During the osmotic dehydration processes, the water activity decreased and stabilized after 5 h, while the bulk densities increased from 1.04 × 103 to 1.26 × 103 kg/m3. Titratable acidity gradually reduced from 1.14 to 0.31% in the atmospheric pressure system and from 1.14 to 0.51% in the vacuum system. pH increased significantly in both systems. Good retention of lycopene was observed even after 10 h of treatments. For the color parameters, the lightness decreased and stabilized after 30 min. In comparison, the redness and yellowness increased in the first 30 min and gradually decreased towards the initial levels in the fresh fruit.

5.
Foods ; 10(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34067938

RESUMO

Autumn olive fruits are a rich source of nutrients and functional compounds, making them functional foods against many diseases and cancers. To increase the consumption, its processing, and its transformation into new products would help spread them to the consumer's table. In this study, after giving an overview of the physicochemical characteristics and the antioxidant activity, the objective was to optimize the osmotic dehydration (OD) of the berries. Response surface methodology was used to investigate the effect of dehydration factors: syrup concentration (30-70%), temperature (20-70 °C), and fruit-to-syrup ratio (1:10-2:10) on the water loss (WL), sugar gain (SG), weight reduction (WR), density (ρ), water activity (aw), and total color change (ΔE) of fruits after 10 h of OD. Results obtained by employing Box-Behnken design (three variables, three levels), and significant terms of regression equations indicated that the syrup concentration and temperature variation are the most affecting factors on the previously mentioned independent variables (WL SG, WR, ρ, aw, and ΔE). Fruits to syrup ratio appeared to have a significant effect only on WL. Under the optimum conditions found (70%, 70 °C, 1.8:10), the predicted values were 59.21%. 19.21%, 32.34%, 1.22 g/cm3, 0.850, and 3.65 for WL, SG, WR, ρ, aw, and ΔE, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA