Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 26(3): 862-75, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24632533

RESUMO

Auxin is a key regulator of plant growth and development. Within the root tip, auxin distribution plays a crucial role specifying developmental zones and coordinating tropic responses. Determining how the organ-scale auxin pattern is regulated at the cellular scale is essential to understanding how these processes are controlled. In this study, we developed an auxin transport model based on actual root cell geometries and carrier subcellular localizations. We tested model predictions using the DII-VENUS auxin sensor in conjunction with state-of-the-art segmentation tools. Our study revealed that auxin efflux carriers alone cannot create the pattern of auxin distribution at the root tip and that AUX1/LAX influx carriers are also required. We observed that AUX1 in lateral root cap (LRC) and elongating epidermal cells greatly enhance auxin's shootward flux, with this flux being predominantly through the LRC, entering the epidermal cells only as they enter the elongation zone. We conclude that the nonpolar AUX1/LAX influx carriers control which tissues have high auxin levels, whereas the polar PIN carriers control the direction of auxin transport within these tissues.


Assuntos
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Transporte Biológico , Frações Subcelulares/metabolismo
2.
Methods Mol Biol ; 2395: 147-164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34822153

RESUMO

Hormone signals like auxin play a critical role controlling plant growth and development. Determining the mechanisms that regulate auxin distribution in cells and tissues is a vital step in understanding this hormone's role during plant development. Recent mathematical models have enabled us to understand the essential role that auxin influx and efflux carriers play in auxin transport in the Arabidopsis root tip (Band et al., Plant Cell 26(3):862-875, 2014; Grieneisen et al., Nature 449(7165):1008-1013, 2007; van den Berg et al., Development 143(18):3350-3362, 2016). In this chapter, we describe SimuPlant: The Virtual Root (SimuPlant, University of Nottingham. https://www.simuplant.org/ . Accessed 20 Sept 2019); an open source software suite, built using the OpenAlea (Pradal et al., Funct Plant Biol 35(10):751-760, 2008) framework, that is designed to simulate vertex-based models in real plant tissue geometries. We provide guidance on how to install SimuPlant, run 2D auxin transport models in the Arabidopsis root tip, manipulate parameters, and visualize model outputs.SimuPlant features a graphical user interface (GUI) designed to allow users with no programming experience to simulate auxin dynamics within the Arabidopsis root tip. Within the user interface, users of SimuPlant can select from a range of model assumptions and can choose to manipulate model and simulation parameter values. Users can then investigate how their choices affect the predicted distribution of auxin in the Arabidopsis root tip. The results of the model simulations are shown visually within the root geometry and can be exported and saved as PNG image files.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Hormônios , Ácidos Indolacéticos , Meristema/metabolismo , Modelos Teóricos , Raízes de Plantas/metabolismo , Plantas/metabolismo , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA