RESUMO
Although the primary origin of sickle cell disease is a hemoglobin disorder, many types of cells contribute considerably to the pathophysiology of the disease. The adhesion of neutrophils to activated endothelium is critical in the pathophysiology of sickle cell disease and targeting neutrophils and their interactions with endothelium represents an important opportunity for the development of new therapeutics. We focused on endothelin-1, a mediator involved in neutrophil activation and recruitment in tissues, and investigated the involvement of the endothelin receptors in the interaction of neutrophils with endothelial cells. We used fluorescence intravital microscopy analyses of the microcirculation in sickle mice and quantitative microfluidic fluorescence microscopy of human blood. Both experiments on the mouse model and patients indicate that blocking endothelin receptors, particularly ETB receptor, strongly influences neutrophil recruitment under inflammatory conditions in sickle cell disease. We show that human neutrophils have functional ETB receptors with calcium signaling capability, leading to increased adhesion to the endothelium through effects on both endothelial cells and neutrophils. Intact ETB function was found to be required for tumor necrosis factor α-dependent upregulation of CD11b on neutrophils. Furthermore, we confirmed that human neutrophils synthesize endothelin-1, which may be involved in autocrine and paracrine pathophysiological actions. Thus, the endothelin-ETB axis should be considered as a cytokine-like potent pro-inflammatory pathway in sickle cell disease. Blockade of endothelin receptors, including ETB, may provide major benefits for preventing or treating vaso-occlusive crises in sickle cell patients.
Assuntos
Anemia Falciforme/metabolismo , Adesão Celular , Endotélio Vascular/metabolismo , Neutrófilos/metabolismo , Receptor de Endotelina B/metabolismo , Adolescente , Anemia Falciforme/sangue , Anemia Falciforme/genética , Anemia Falciforme/terapia , Animais , Antígeno CD11b/metabolismo , Cálcio/metabolismo , Estudos de Casos e Controles , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular , Criança , Pré-Escolar , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Antagonistas do Receptor de Endotelina A/farmacologia , Antagonistas do Receptor de Endotelina B/farmacologia , Endotelina-1/metabolismo , Hemodinâmica/efeitos dos fármacos , Humanos , Contagem de Leucócitos , Migração e Rolagem de Leucócitos , Antígeno de Macrófago 1/metabolismo , Camundongos , Ativação de Neutrófilo , Neutrófilos/imunologia , Receptor de Endotelina A/metabolismo , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Migração Transendotelial e Transepitelial/imunologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Human and murine skin wounding commonly results in fibrotic scarring, but the murine wounding model wound-induced hair neogenesis (WIHN) can frequently result in a regenerative repair response. Here, we show in single-cell RNA sequencing comparisons of semi-regenerative and fibrotic WIHN wounds, increased expression of phagocytic/lysosomal genes in macrophages associated with predominance of fibrotic myofibroblasts in fibrotic wounds. Investigation revealed that macrophages in the late wound drive fibrosis by phagocytizing dermal Wnt inhibitor SFRP4 to establish persistent Wnt activity. In accordance, phagocytosis abrogation resulted in transient Wnt activity and a more regenerative healing. Phagocytosis of SFRP4 was integrin-mediated and dependent on the interaction of SFRP4 with the EDA splice variant of fibronectin. In the human skin condition hidradenitis suppurativa, phagocytosis of SFRP4 by macrophages correlated with fibrotic wound repair. These results reveal that macrophages can modulate a key signaling pathway via phagocytosis to alter the skin wound healing fate.
Assuntos
Macrófagos/imunologia , Macrófagos/metabolismo , Fagocitose/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Cicatrização , Fibroblastos/metabolismo , Fibrose , Humanos , Proteólise , Pele/imunologia , Pele/lesões , Pele/metabolismo , Cicatrização/imunologiaRESUMO
Despite numerous observations linking protracted exposure to low-dose (LD) radiation and leukemia occurrence, the effects of LD irradiation on hematopoietic stem cells (HSCs) remain poorly documented. Here, we show that adult HSCs are hypersensitive to LD irradiation. This hyper-radiosensitivity is dependent on an immediate increase in the levels of reactive oxygen species (ROS) that also promotes autophagy and activation of the Keap1/Nrf2 antioxidant pathway. Nrf2 activation initially protects HSCs from the detrimental effects of ROS, but protection is transient, and increased ROS levels return, promoting a long-term decrease in HSC self-renewal. In vivo, LD total body irradiation (TBI) does not decrease HSC numbers unless the HSC microenvironment is altered by an inflammatory insult. Paradoxically, such an insult, in the form of granulocyte colony-stimulating factor (G-CSF) preconditioning, followed by LD-TBI facilitates efficient bone marrow transplantation without myeloablation. Thus, LD irradiation has long-term detrimental effects on HSCs that may result in hematological malignancies, but LD-TBI may open avenues to facilitate autologous bone marrow transplantation.
Assuntos
Células-Tronco Hematopoéticas/metabolismo , Estresse Oxidativo/genética , Irradiação Corporal Total/métodos , Animais , Humanos , CamundongosRESUMO
BACKGROUND: Neutrophil gelatinase-associated lipocalin (NGAL) is emerging as a mediator of various biological and pathological states. However, the specific biological role of this molecule remains unclear, as it serves as a biomarker for many conditions. The high sensitivity of NGAL as a biomarker coupled with relatively low specificity may hide important biological roles. Data point toward an acute compensatory, protective role for NGAL in response to adverse cellular stresses, including inflammatory and oxidative stress. The aim of this study was to understand whether NGAL modulates the T-cell response through regulation of the human leukocyte antigen G (HLA-G) complex, which is a mediator of tolerance. METHODOLOGY/PRINCIPAL FINDINGS: Peripheral blood mononuclear cells (PBMCs) were obtained from eight healthy donors and isolated by centrifugation on a Ficoll gradient. All donors gave informed consent. PBMCs were treated with four different concentrations of NGAL (40-320 ng/ml) in an iron-loaded or iron-free form. Changes in cell phenotype were analyzed by flow cytometry. NGAL stimulated expression of HLA-G on CD4+ T cells in a dose- and iron-dependent manner. Iron deficiency prevented NGAL-mediated effects, such that HLA-G expression was unaltered. Furthermore, NGAL treatment affected stimulation of regulatory T cells and in vitro expansion of CD4(+) CD25(+) FoxP3(+) cells. An NGAL neutralizing antibody limited HLA-G expression and significantly decreased the percentage of CD4(+) CD25(+) FoxP3(+) cells. CONCLUSIONS/SIGNIFICANCE: We provide in vitro evidence that NGAL is involved in cellular immunity. The potential role of NGAL as an immunomodulatory molecule is based on its ability to induce immune tolerance by upregulating HLA-G expression and expansion of T-regulatory cells in healthy donors. Future studies should further evaluate the role of NGAL in immunology and immunomodulation and its possible relationship to immunosuppressive therapy efficacy, tolerance induction in transplant patients, and other immunological disorders.