Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 851(Pt 1): 158226, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35998716

RESUMO

The Sea Scheldt estuary has been suggested to be a significant pathway for transfer of plastic debris to the North Sea. We have studied 12,801 plastic items that were collected in the Sea Scheldt estuary (Belgium) during 3 sampling campaigns (in spring, summer, and autumn) using a technique called anchor netting. The investigation results indicated that the abundance of plastic debris in the Scheldt River was on average 1.6 × 10-3 items per m3 with an average weight of 0.38 × 10-3 g per m3. Foils were the most abundant form, accounting for >88 % of the samples, followed by fragments for 11 % of the samples and filaments, making up for <1 % of the plastic debris. FTIR spectroscopy of 7 % of the total number of plastic debris items collected in the Sea Scheldt estuary (n = 883) revealed that polypropylene (PP), polyethylene (PE), and polystyrene (PS) originating from disposable packaging materials were the most abundant types of polymers. A limited number of plastic debris items (n = 100) were selected for non-destructive screening of their mineral element composition using micro-X-ray fluorescence spectrometry (µXRF). The corresponding results revealed that S, Ca, Si, P, Al, and Fe were the predominant mineral elements. These elements originate from flame retardants, mineral fillers, and commonly used catalysts for plastic production. Finally, machine learning algorithms were deployed to test a new concept for forensic identification of the different plastic entities based on the most important elements present using a limited subset of PP (n = 36) and PE (n = 35) plastic entities.


Assuntos
Retardadores de Chama , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Estuários , Retardadores de Chama/análise , Plásticos/análise , Polietileno/análise , Polímeros , Polipropilenos/análise , Poliestirenos/análise , Resíduos/análise , Poluentes Químicos da Água/análise
2.
J Phys Chem Lett ; 11(17): 7363-7370, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32787306

RESUMO

Water permeation between stacked layers of hBN sheets forming 2D nanochannels is investigated using large-scale ab initio-quality molecular dynamics simulations. A high-dimensional neural network potential trained on density-functional theory calculations is employed. We simulate water in van der Waals nanocapillaries and study the impact of nanometric confinement on the structure and dynamics of water using both equilibrium and nonequilibrium methods. At an interlayer distance of 10.2 Å confinement induces a first-order phase transition resulting in a well-defined AA-stacked bilayer of hexagonal ice. In contrast, for h < 9 Å, the 2D water monolayer consists of a mixture of different locally ordered patterns of squares, pentagons, and hexagons. We found a significant change in the transport properties of confined water, particularly for monolayer water where the water-solid friction coefficient decreases to half and the diffusion coefficient increases by a factor of 4 as compared to bulk water. Accordingly, the slip-velocity is found to increase under confinement and we found that the overall permeation is dominated by monolayer water adjacent to the hBN membranes at extreme confinements. We conclude that monolayer water in addition to bilayer ice has a major contribution to water transport through 2D nanochannels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA