Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(3): e2208377120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36630450

RESUMO

Nanoparticles or drug carriers which can selectively bind to cells expressing receptors above a certain threshold surface density are very promising for targeting cells overexpressing specific receptors under pathological conditions. Simulations and theoretical studies have suggested that such selectivity can be enhanced by functionalizing nanoparticles with a bimodal polymer monolayer (BM) containing shorter ligated chains and longer inert protective chains. However, a systematic study of the effect of these parameters under tightly controlled conditions is still missing. Here, we develop well-defined and highly specific platforms mimicking particle-cell interface using surface chemistry to provide a experimental proof of such selectivity. Using surface plasmon resonance and atomic force microscopy, we report the selective adsorption of BM-functionalized nanoparticles, and especially, a significant enhanced selective behavior by using a BM with longer protective chains. Furthermore, a model is also developed to describe the repulsive contribution of the protective brush to nanoparticle adsorption. This model is combined with super-selectivity theory to support experimental findings and shows that the observed selectivity is due to the steric energy barrier which requires a high number of ligand-receptor bonds to allow nanoparticle adsorption. Finally, the results show how the relative length and molar ratio of two chains can be tuned to target a threshold surface density of receptors and thus lay the foundation for the rational design of BM-functionalized nanoparticles for selective targeting.


Assuntos
Nanopartículas , Nanopartículas/química , Polímeros , Ligantes , Modelos Teóricos , Ressonância de Plasmônio de Superfície
2.
Langmuir ; 39(8): 3072-3082, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36793207

RESUMO

It has been shown that the use of conformationally pH-switchable lipids can drastically enhance the cytosolic drug delivery of lipid vesicles. Understanding the process by which the pH-switchable lipids disturb the lipid assembly of nanoparticles and trigger the cargo release is crucial to optimize the rational design of pH-switchable lipids. Here, we gather morphological observations (FF-SEM, Cryo-TEM, AFM, confocal microscopy), physicochemical characterization (DLS, ELS), as well as phase behavior studies (DSC, 2H NMR, Langmuir isotherm, and MAS NMR) to propose a mechanism of pH-triggered membrane destabilization. We demonstrate that the switchable lipids are homogeneously incorporated with other co-lipids (DSPC, cholesterol, and DSPE-PEG2000) and promote a liquid-ordered phase insensitive to temperature variation. Upon acidification, the protonation of the switchable lipids triggers a conformational switch altering the self-assembly properties of lipid nanoparticles. These modifications do not lead to a phase separation of the lipid membrane; however, they cause fluctuations and local defects, which result in morphological changes of the lipid vesicles. These changes are proposed to affect the permeability of vesicle membrane, triggering the release of the cargo encapsulated in the lipid vesicles (LVs). Our results confirm that pH-triggered release does not require major morphological changes, but can result from small defects affecting the lipid membrane permeability.


Assuntos
Sistemas de Liberação de Medicamentos , Lipídeos , Lipídeos/química , Fenômenos Químicos , Conformação Molecular , Permeabilidade
3.
Langmuir ; 37(38): 11212-11221, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34523940

RESUMO

Dual-responsive poly-(N-isopropylacrylamide) (PNIPAM) microgels surface-functionalized with polyethylene glycol (PEG) or poly-2-dimethylaminoethyl methacrylate (PDMAEMA) were developed to enable the swelling behavior and surface properties of the microgels to be tuned independently. The thermo-triggered swelling and pH-triggered surface properties of the microgels were investigated in aqueous suspensions using dynamic light scattering and on substrates using the surface forces apparatus. Grafting polymer chains on the microgel surface did not impede the thermo-triggered swelling behavior of the microgels in suspensions and immobilized on substrates. An unprecedented decoupling of the swelling behavior and surface properties could be obtained. More particularly, the thermo-triggered swelling behavior of the PNIPAM underlying microstructure could be tuned below and above the phase transition temperature with no change in the surface potential and adhesion provided by the surface non-responsive PEG.

4.
Langmuir ; 35(48): 15605-15613, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31408351

RESUMO

In this work, we have investigated the behavior under shear and compression of mica surfaces coated with poly(N-isopropylacrylamide) cationic microgels. We have observed the emergence of velocity dependent, shear-induced normal forces, which can be large enough to entrain a fluid film that separates the surfaces out of contact, driving the dynamic system from conditions of boundary to hydrodynamic lubrication. By implementing a feedback-loop control on the surface separation, we were able to quantify the magnitude of the lift force as a function of the surface separation and driving speed. Our results illustrate how elastohydrodynamic effects can play an important role in the lubrication of compliant surfaces, providing pathways for control of friction and wear.

5.
Langmuir ; 35(48): 15592-15604, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31550893

RESUMO

The tribological properties of two novel biomimetic multihierarchical polymers, synthesized by covalently linking single bottlebrush polymers onto a hyaluronic acid (HA) backbone, were investigated in the boundary lubrication regime using the surface forces apparatus. The polymers were immobilized on flat substrates, and their lubrication properties and wear resistance were investigated in aqueous media in the absence of a polymer reservoir (i.e., no free polymer chains in the surrounding medium) in order to better reveal the underlying mechanism of surface-attached biomimetic polymers. The effects of composition, structure, and, more particularly, surface attachment (physisorbed vs chemisorbed) on the tribological properties were investigated and compared with other biomimicking systems reported in the literature. The covalently surface attached bottlebrushes allowed wear resistance between sliding surfaces to be significantly improved, compared to physisorbed bottlebrushes, with a constant coefficient of friction (10-1) of up to few tens of MPa. The results confirm that surface-attached bottlebrushes on their own are not responsible for the extremely low friction often reported in the literature or found in articular joints. Moreover, the study confirmed that the irreversible attachment of bottlebrushes, or multihierarchical polymer layers, to surfaces is crucial to improving wear resistance between sliding surfaces in aqueous media.

6.
Langmuir ; 35(48): 15723-15728, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31566381

RESUMO

We describe how a long-range repulsive interaction can surreptitiously modify the effective geometry of approaching compliant surfaces, with significant consequences on friction. We investigated the behavior under shear and compression of mica surfaces coated with poly(N-isopropylacrylamide) pNIPAM-based cationic microgels. We show that local surface deformations as small as a few nanometers must be considered to understand the response of such surfaces under compression and shear, in particular when the range of action of normal and friction forces are significantly different, as is often the case for macromolecular lubrication. Under these conditions, a subtle interplay between normal forces and surface compliance may significantly reduce friction increment by limiting the minimum approach of the surfaces under pressure. We found that stiffening of compressed microgels confined in the region of closest approach make it increasingly difficult to reduce the gap between the mica surfaces, limiting the deformation of microgels distant from the contact apex and their contribution to global friction while increasing the effective contact radius. These findings reveal a simple mechanism for a robust control of lubrication: by properly tuning the stiffness and geometry of the interacting bodies, for an ad hoc long-range interaction, the growth of friction with applied normal load can be significantly hindered. Thus, substrate compliance is as significant as surface interaction in the design of low friction, long life tribological systems.

7.
Langmuir ; 33(15): 3610-3623, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28296414

RESUMO

Normal and friction forces between immobilized two-dimensional (2D) homogeneous non-close-packed colloidal arrays made of different particles are compared in aqueous media. Soft pH-responsive (microgels) and nonresponsive hard (silica) particles of different sizes were used to create the 2D arrays. The results show that the friction of soft responsive structured layers can be successfully modulated by varying the pH, with a friction coefficient varying by nearly 3 orders of magnitude (10-2 to 1). This important change in lubricating properties is mainly correlated with the particle swelling behavior, i.e., the friction coefficient decreasing exponentially with an increase in the swelling ratio regardless of the size, surface coverage, and degree of ionization of the particles. In addition, the robustly attached microgel particles were able to sustain high pressure (up to 200 atm) without significant surface damage. The 2D arrays of nonresponsive hard particles also gave rise to a very low friction coefficient (µ ≈ 10-3) under similar experimental conditions and could sustain a larger pressure without damage (≤600 atm). The low friction dissipation observed between the hard arrays resulted from a rolling mechanism. Even though rolling requires nonimmobilized particles on the substrates, the results show the importance of attaching a certain proportion of particles on the surfaces to reduce friction.

8.
Langmuir ; 29(42): 12936-49, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24053315

RESUMO

We have studied the adsorption and lubricant properties of a multifunctional triblock copolymer poly(L-lysine)-b-poly(acrylic acid)-b-poly(L-lysine). In particular, we investigated the nature of the layer adsorbed under different conditions of polymer and salt concentration and the lubricant properties of the polymer layer before and after its chemical cross-linking by bridging the poly(acrylic acid) blocks. We found that the amount of polymer adsorbed is controlled by the ionic strength and the polymer concentration in the solution. In all cases, the self-assembled polymer layer is a poor lubricant before cross-linking, but the cohesion and load-carrying ability of the layer are substantially improved by this reaction. However, the chemically cross-linked coating has a limited deformation capacity as a consequence of its permanent network nature, and irreversible damage is observed after excessive strain of the film.


Assuntos
Reagentes de Ligações Cruzadas/química , Polímeros/química , Adsorção , Concentração Osmolar , Tamanho da Partícula , Propriedades de Superfície
9.
Nature ; 425(6954): 163-5, 2003 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-12968175

RESUMO

Long-ranged forces between surfaces in a liquid control effects from colloid stability to biolubrication, and can be modified either by steric factors due to flexible polymers, or by surface charge effects. In particular, neutral polymer 'brushes' may lead to a massive reduction in sliding friction between the surfaces to which they are attached, whereas hydrated ions can act as extremely efficient lubricants between sliding charged surfaces. Here we show that brushes of charged polymers (polyelectrolytes) attached to surfaces rubbing across an aqueous medium result in superior lubrication compared to other polymeric surfactants. Effective friction coefficients with polyelectrolyte brushes in water are lower than about 0.0006-0.001 even at low sliding velocities and at pressures of up to several atmospheres (typical of those in living systems). We attribute this to the exceptional resistance to mutual interpenetration displayed by the compressed, counterion-swollen brushes, together with the fluidity of the hydration layers surrounding the charged, rubbing polymer segments. Our findings may have implications for biolubrication effects, which are important in the design of lubricated surfaces in artificial implants, and in understanding frictional processes in biological systems.

10.
Bioconjug Chem ; 19(10): 2030-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18803413

RESUMO

New active particulate polymeric vectors based on branched polyester copolymers of hydroxy-acid and allyl glycidyl ether were developed to target drugs to the inflammatory endothelial cell surface. The hydroxyl and carboxyl derivatives of these polymers allow grafting of ligand molecules on the polyester backbones at different densities. A known potent nonselective selectin ligand was selected and synthesized using a new scheme. This synthesis allowed the grafting of the ligand to the polyester polymers, preserving its binding activity as assessed by docking simulations. Selectin expression on human umbilical cord vascular endothelial cells (HUVEC) was induced with the pro-inflammatory bacterial lipopolysaccharide (LPS) or with the nonselective inhibitor of nitric oxide synthase L-NAME. Strong adhesion of the ligand decorated nanoparticles was evidenced in vitro on activated HUVEC. Binding of nanoparticles bearing ligand molecules could be efficiently inhibited by prior incubation of cells with free ligand, demonstrating that adhesion of the nanoparticles is mediated by specific interaction between the ligand and the selectin receptors. These nanoparticles could be used for specific drug delivery to the activated vascular endothelium, suggesting their application in the treatment of diseases with an inflammatory component such as rheumatoid arthritis and cancer.


Assuntos
Portadores de Fármacos/metabolismo , Células Endoteliais/metabolismo , Selectinas/metabolismo , Animais , Ácidos Carboxílicos/química , Linhagem Celular , Membrana Celular/metabolismo , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Humanos , Ácido Láctico/química , Ligantes , Modelos Moleculares , Nanopartículas/química , Especificidade de Órgãos , Poliésteres , Polímeros/química , Ratos , Especificidade por Substrato , Propriedades de Superfície
11.
J Phys Chem B ; 112(39): 12208-16, 2008 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-18774849

RESUMO

Normal and lateral forces between two opposing monolayers of grafted polymer nanoparticles (NPs) were measured using the Surface Forces Apparatus in a humid atmosphere. The NPs made of N, N-diethylacrylamide and 2-hydroxyethyl methacrylate have a hydrodynamic diameter of ca. 660 nm at 25 degrees C. The effect of surface roughness was studied by creating surface asperities using different NP grafting densities ranging from 0.41 to 2.63 NPs/mum (2). An increase in the NPs grafting density gave rise to an increase in surface roughness and to a deformation of the nanoparticles caused by the lateral pressure between neighboring particles. An elastoplastic behavior of the nanoparticles was observed for large grafting densities, while a purely elastic behavior was observed for small grafting densities. The lateral forces measured between two opposing NP monolayers sliding past each other followed Amontons' law for all grafting densities. The friction coefficient between the surfaces appeared to increase significantly with an increase in surface roughness, which was inherent to an increase in the elastoplastic behavior of the NP monolayers.


Assuntos
Silicatos de Alumínio/química , Nanopartículas/química , Ar , Fricção , Glutaral/química , Umidade , Cinética , Polímeros/química , Propriedades de Superfície
12.
Eur J Pharm Biopharm ; 67(2): 329-38, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17490868

RESUMO

The purpose of this study was to develop oil-in-water emulsions (100-120 nm in diameter) and to correlate the surface properties of the emulsions with blood residence time and accumulation into neoplastic tissues by passive targeting. We investigated the effect of phospholipid and sphingolipid emulsifiers, hydrogenated soybean phosphatidylcholine (HSPC) and egg sphingomyelin (ESM), in combination with polysorbate 80 (PS-80) and 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine (DSPE)-PEG lipids of various PEG chain lengths and structures in prolonging circulation time and enhancing accumulation into B16 melanoma or C26 colon adenocarcinoma. The relationship between amphiphile molecular packing at the air/water interface on emulsion stability upon dilution in albumin and circulation longevity in vivo was also explored for non-PEGylated emulsions. PEGylation of the droplet surface with 10-15 mol% of DSPE-PEG 2000 or 5000 enhanced the circulation time of the emulsions, however, accumulation was only observed in the C26 tumor model. The tighter molecular packing observed with ESM/PS-80 monolayers at the air/water interface compared to HSPC/PS-80 correlated with improved emulsion stability in vitro, however, enhanced circulation time in vivo was not observed. A better understanding of the relationships between composition and performance will result in improved emulsion-based drug delivery vehicles for cancer therapy.


Assuntos
Neoplasias/terapia , Polietilenoglicóis/química , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Portadores de Fármacos , Emulsões , Humanos , Ligação de Hidrogênio , Melanoma Experimental , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fosfatidilcolinas/química , Glycine max/metabolismo , Esfingomielinas/química , Tecnologia Farmacêutica
13.
Biomaterials ; 113: 230-242, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27825070

RESUMO

As double stranded, single stranded siRNA (ss-siRNA) has demonstrated gene silencing activity but still requires efficient carriers to reach its cytoplasmic target. To better understand the fundamental aspect driving the complexation of ss-siRNA with nanocarriers, the interactions between surfaces of various compositions across a ss-siRNA solution were investigated using the Surface Forces Apparatus. The results show that ss-siRNA can adsorb onto hydrophilic (positively and negatively charged) as well as on hydrophobic substrates suggesting that the complexation can occur through hydrophobic interactions and hydrogen bonding in addition to electrostatic interactions. Moreover, the binding strength and the conformation of ss-siRNA depend on the nature of the interactions between the ss-siRNA and the surfaces. The binding of ss-siRNA with nanocarriers, such as micelles or liposomes through non-electrostatic interactions was also evidenced by a SYBR® Gold cyanine dye. We evidenced the presence of interactions between the dye and oligonucleotides already complexed to non-cationic nanovectors biasing the quantification of the encapsulation. These results suggest that non-electrostatic interactions could be exploited to complement electrostatic interactions in the design of nanocarriers. In particular, the different highlighted interactions can be used to complex ss-siRNA with uncharged or anionic carriers which are related to lower toxicity compared to cationic carriers.


Assuntos
Lipossomos/química , Micelas , RNA Interferente Pequeno/administração & dosagem , Adsorção , Sítios de Ligação , Cátions/química , Interações Hidrofóbicas e Hidrofílicas , Conformação de Ácido Nucleico , RNA Interferente Pequeno/química , Eletricidade Estática
14.
J Mater Chem B ; 3(4): 665-672, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32262349

RESUMO

Hybrid nanoparticles (NPs) integrated with dye molecules have attracted interest for biomolecular detection, due to their effortless fabrication, timely operation, controllable specific recognition and low-cost. In this study, hybrid core-shell NPs made of a metal-dye complex (AgNPs@[Ru(bpy)3]2+) core and a chitosan (CS) shell exhibiting a selective fluorescence quenching effect were successfully prepared using a cost-effective wet-chemical approach. The physico-chemical properties of NPs were determined by spectroscopy and light scattering measurements. The bio-affinity of the AgNPs@[Ru(bpy)3]2+/CS was evaluated in aqueous media using sialic acid (SA) as the target molecule in the presence of different monosaccharides and anionic biomolecules as interferents. A significant fluorescence quenching of hybrid NPs was observed in aqueous solutions of SA with interferents, while no significant quenching effect was detected in SA-free interferent solutions. The selective binding of SA to the particles resulted from favorable electrostatic interactions and inter-molecular hydrogen bonding with the functional groups of CS. The hybrid NP system displayed a good sensitivity for SA with a detection limit of 5.1 nM and a concentration dependent fluorescence quenching for SA concentrations ranging from 25 nM to 3.2 µM. This hybrid NP system represents a promising alternative probe for detecting sialic acid in complex samples.

15.
ACS Appl Mater Interfaces ; 7(27): 14552-6, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26120929

RESUMO

A biofunctionalized graphene oxide (GO) nanosheet with improved physicochemical properties is useful for electrocatalysis and sensor development. Herein, a new class of functionalized GO with a chemically anchored biomolecule glucosamine is developed. Structural and chemical analyses confirm the glucosamine anchoring. Ultraviolet irradiation transforms the surface chemistry of GO. Glucosamine-anchored GO nanosheets exhibit improved cyclic voltammetric and amperometric sensing activity toward the model redox probe, ruthenium(II) and N-acetylneuraminic acid, respectively. The biomolecular anchoring and ultraviolet irradiation helped to tune and enhance the properties of GO, which may find multiple applications in optimizing sensor platforms.


Assuntos
Condutometria/instrumentação , Glucosamina/química , Grafite/química , Membranas Artificiais , Nanopartículas/química , Óxidos/química , Condutividade Elétrica , Eletrodos , Desenho de Equipamento , Análise de Falha de Equipamento , Glucosamina/efeitos da radiação , Grafite/efeitos da radiação , Teste de Materiais , Nanopartículas/efeitos da radiação , Nanopartículas/ultraestrutura , Óxidos/efeitos da radiação , Raios Ultravioleta
16.
J Pharm Sci ; 91(8): 1795-802, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12115806

RESUMO

The aim of this study was to characterize a pH-sensitive liposome formulation bearing a terminally alkylated N-isopropylacrylamide (NIPAM) copolymer with regard to its pH responsiveness, surface properties, and pharmacokinetics. The interacting forces between two lipid bilayers bearing the anchored NIPAM copolymer were measured with a surface force apparatus. The pH-triggered content release was evaluated in buffer before and after incubation in human serum. The pharmacokinetics was determined in rats following the intravenous injection of 67Ga-loaded liposomes with or without the polymer coating. The force measurements between lipid bilayers showed that NIPAM copolymers provide a steric barrier that was dependent on pH. The pH-sensitive liposomes maintained their pH sensitivity after incubation in serum. In vivo, the polymer-coated liposomes exhibited a prolonged circulation time in rats, with an area under the blood concentration-time curve that is 1.6-fold higher than the control formulation. This study showed that liposomes can be rendered pH sensitive by anchoring a terminally alkylated NIPAM copolymer at their surface. At neutral pH, the polymer provides a steric barrier that increases the liposome circulation time in vivo.


Assuntos
Acrilamidas/química , Lipossomos/química , Acrilamidas/síntese química , Algoritmos , Alquilação , Animais , Fenômenos Químicos , Físico-Química , Estabilidade de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Cinética , Bicamadas Lipídicas , Lipossomos/farmacocinética , Masculino , Peso Molecular , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
17.
J Phys Chem B ; 114(30): 9721-8, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20614943

RESUMO

Static and dynamic interaction forces between two thermosensitive polymeric nanoparticle monolayers grafted onto mica surfaces and immersed in water were studied using a surface forces apparatus. The polymeric nanoparticles (NPs) were made of N,N-diethylacrylamide and had a hydrodynamic diameter of ca. 780 nm at 20 degrees C in aqueous suspension. They were irreversibly grafted onto chemically modified mica surfaces at a constant surface coverage of 2.6 NPs/mum(2). The measured normal forces between two opposing NP monolayers were found to be strongly dependent on the temperature. At temperatures lower than the lower critical solution temperature (LCST), the grafted NPs were swollen, and the normal interaction forces between the two NP monolayers were repulsive. Above the LCST, the NPs collapsed, and attractive forces between the NP layers were measured. The swollen NPs were found to exhibit very low friction forces compared to the collapsed ones. The effect of the sliding velocity on the shear stress was investigated, and the results are in agreement with the so-called adhesive friction model developed for rubber friction. Our results suggest that the water content in the contact area and the interdiffusion of polymer chains are important parameters in determining the friction between polymer-bearing surfaces.


Assuntos
Nanopartículas/química , Água/química , Silicatos de Alumínio/química , Cinética , Propriedades de Superfície , Temperatura
18.
Langmuir ; 25(9): 5313-21, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19256467

RESUMO

The controlled grafting density of poly(tert-butyl acrylate) was studied on OH-activated mica substrates via surface-initiated atom-transfer radical polymerization (ATRP). By properly adjusting parameters such as the immobilization reaction time and the concentration of an ATRP initiator, a wide range of initiator surface coverages and hence polymer densities on mica were possible. The covalently immobilized initiator successfully promoted the polymerization of tert-butyl acrylate on mica surfaces. The resulting polymer layer thickness was measured by AFM using a step-height method. Linear relationships of the polymer thickness with respect to the molecular weight of the free polymer and with respect to the monomer conversion were observed, suggesting that ATRP is well controlled and relatively densely end-grafted layers were obtained. The polymer grafting density controlled by adjusting the initiator surface coverage was confirmed by the polymer layer swelling capacity and film thickness measurements.


Assuntos
Silicatos de Alumínio/química , Radical Hidroxila/química , Polímeros/química , Microscopia de Força Atômica , Estrutura Molecular , Peso Molecular , Propriedades de Superfície
19.
Langmuir ; 24(4): 1550-9, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18225926

RESUMO

Polyelectrolyte brushes were built on mica by anchoring polystyrene-poly(acrylic acid) (PS-b-PAA) diblock copolymers at a controlled surface density in a polystyrene monolayer covalently attached to OH-activated mica surfaces. Compared to physisorbed polymer brushes, these irreversibly attached charged brushes allow the polymer grafting density to remain constant upon changes in environmental conditions (e.g., pH, salt concentration, compression, and shear). The normal interaction and friction forces as a function of surface separation distance and at different concentrations of added salt (NaCl) were investigated using a surface forces apparatus. The interaction force profiles were completely reversible both on loading and receding and were purely repulsive. For a constant polymer grafting density, the influence of the polyelectrolyte charges and the Debye screening effect on the overall interaction forces was investigated. The experimental interaction force profiles agree very well with scaling models developed for neutral and charged polymer brushes. The variation of the friction force between two PAA brushes in motion with respect to each other as a function of surface separation distance appeared to be similar to that observed with neutral brushes. This similarity suggests that the increase in friction is associated with an increase in mutual interpenetration upon compression as observed with neutral polymers. The effect of the PAA charges and added ions was more significant on the repulsive normal forces than on the friction forces. The reversible characteristics of the normal force profiles and friction measurements confirmed the strong attachment of the PAA brushes to the mica substrate. High friction coefficients (ca 0.3) were measured at relatively high pressures (40 atm) with no surface damage or polymer removal.


Assuntos
Acrilatos/química , Eletrólitos/química , Poliestirenos/química , Silicatos de Alumínio/química , Fricção , Concentração de Íons de Hidrogênio , Estrutura Molecular , Cloreto de Sódio/química , Propriedades de Superfície
20.
Langmuir ; 24(2): 379-82, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18076200

RESUMO

Mica substrates were activated by a plasma method leading to OH-functionalized surfaces to which an atom transfer radical polymerization (ATRP) radical initiator was covalently bound using standard siloxane protocols. The unprecedented covalently immobilized initiator underwent radical polymerization with tert-butyl acrylate, yielding for the first time end-grafted polymer brushes that are covalently linked to mica. The initiator grafting on the mica substrate was confirmed by time-of-flight secondary ion mass spectrometry (TOF-SIMS), while the change in the water contact angle of the OH-activated mica surface was used to follow the change in surface coverage of the initiator on the surface. The polymer brush and initiator film thicknesses relative to the virgin mica were confirmed by atomic force microscopy (AFM). This was done by comparing the atomic step-height difference between a protected area of freshly cleaved mica and a zone exposed to plasma activation, initiator immobilization, and then ATRP.


Assuntos
Silicatos de Alumínio/química , Radical Hidroxila/química , Polímeros/química , Microscopia de Força Atômica , Espectrometria de Massa de Íon Secundário , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA