RESUMO
Heparins have been invaluable therapeutic anticoagulant polysaccharides for over a century, whether used as unfractionated heparin or as low molecular weight heparin (LMWH) derivatives. However, heparin production by extraction from animal tissues presents multiple challenges, including the risk of adulteration, contamination, prion and viral impurities, limited supply, insecure supply chain, and significant batch-to-batch variability. The use of animal-derived heparin also raises ethical and religious concerns, as well as carries the risk of transmitting zoonotic diseases. Chemoenzymatic synthesis of animal-free heparin products would offer several advantages, including reliable and scalable production processes, improved purity and consistency, and the ability to produce heparin polysaccharides with molecular weight, structural, and functional properties equivalent to those of the United States Pharmacopeia (USP) heparin, currently only sourced from porcine intestinal mucosa. We report a scalable process for the production of bioengineered heparin that is biologically and compositionally similar to USP heparin. This process relies on enzymes from the heparin biosynthetic pathway, immobilized on an inert support and requires a tailored N-sulfoheparosan with N-sulfo levels similar to those of porcine heparins. We also report the conversion of our bioengineered heparin into a LMWH that is biologically and compositionally similar to USP enoxaparin. Ultimately, we demonstrate major advances to a process to provide a potential clinical and sustainable alternative to porcine-derived heparin products.
Assuntos
Heparina de Baixo Peso Molecular , Heparina , Animais , Suínos , Heparina/metabolismo , Heparina de Baixo Peso Molecular/química , Anticoagulantes/química , Peso Molecular , Contaminação de MedicamentosRESUMO
Dynein motors facilitate the majority of minus-end-directed transport events on microtubules. The dynein adaptor Bicaudal D2 (BicD2) recruits the dynein machinery to several cellular cargo for transport, including Nup358, which facilitates a nuclear positioning pathway that is essential for the differentiation of distinct brain progenitor cells. Previously, we showed that Nup358 forms a "cargo recognition α-helix" upon binding to BicD2; however, the specifics of the BicD2-Nup358 interface are still not well understood. Here, we used AlphaFold2, complemented by two additional docking programs (HADDOCK and ClusPro) as well as mutagenesis, to show that the Nup358 cargo-recognition α-helix binds to BicD2 between residues 747 and 774 in an anti-parallel manner, forming a helical bundle. We identified two intermolecular salt bridges that are important to stabilize the interface. In addition, we uncovered a secondary interface mediated by an intrinsically disordered region of Nup358 that is directly N-terminal to the cargo-recognition α-helix and binds to BicD2 between residues 774 and 800. This is the same BicD2 domain that binds to the competing cargo adapter Rab6, which is important for the transport of Golgi-derived and secretory vesicles. Our results establish a structural basis for cargo recognition and selection by the dynein adapter BicD2, which facilitates transport pathways that are important for brain development.
Assuntos
Dineínas , Proteínas Associadas aos Microtúbulos , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Transporte Biológico , Modelos EstruturaisRESUMO
(1) Background: Prion-like transcellular spreading of tau pathology in Alzheimer's disease (AD) is mediated by tau binding to the cell-surface glycan heparan sulfate (HS). However, the structural determinants for tau-HS interaction are not well understood. (2) Methods and Results: Binding-site mapping using NMR showed two major binding regions in full-length tau responsible for heparin interaction. Thus, two tau constructs, tau PRR2* and tau R2*, were designed to investigate the molecular details at the tau-heparin binding interface. The 2D 1H-15N HSQC of tau PRR2* and tau R2* lacked dispersion, which is characteristic for intrinsically disordered proteins. NMR titration of Arixtra into 15N-labeled tau R2* induced large chemical shift perturbations (CSPs) in 275VQIINK280 and downstream residues K281-D283, in which L282 and I278 displayed the largest shifts. NMR titration of Arixtra into 15N-labeled tau PRR2* induced the largest CSPs for residue R209 followed by residues S210 and R211. Residue-based CSP fitting showed that tau PRR2*-Arixtra interaction had a much stronger binding affinity (0.37-0.67 mM) than that of tau R2*-Arixtra (1.90-5.12 mM) interaction. (3) Conclusions: Our results suggested that PRR2 is a crucial domain for tau-heparin and tau-HS interaction.
Assuntos
Heparina , Heparitina Sulfato , Ligação Proteica , Fondaparinux , Sítios de Ligação , Heparitina Sulfato/química , Heparina/química , Prolina/metabolismo , Proteínas tau/metabolismoRESUMO
Nup358, a protein of the nuclear pore complex, facilitates a nuclear positioning pathway that is essential for many biological processes, including neuromuscular and brain development. Nup358 interacts with the dynein adaptor Bicaudal D2 (BicD2), which in turn recruits the dynein machinery to position the nucleus. However, the molecular mechanisms of the Nup358/BicD2 interaction and the activation of transport remain poorly understood. Here for the first time, we show that a minimal Nup358 domain activates dynein/dynactin/BicD2 for processive motility on microtubules. Using nuclear magnetic resonance titration and chemical exchange saturation transfer, mutagenesis, and circular dichroism spectroscopy, a Nup358 α-helix encompassing residues 2162-2184 was identified, which transitioned from a random coil to an α-helical conformation upon BicD2 binding and formed the core of the Nup358-BicD2 interface. Mutations in this region of Nup358 decreased the Nup358/BicD2 interaction, resulting in decreased dynein recruitment and impaired motility. BicD2 thus recognizes Nup358 through a 'cargo recognition α-helix,' a structural feature that may stabilize BicD2 in its activated state and promote processive dynein motility.
Assuntos
Dineínas , Proteínas Associadas aos Microtúbulos , Chaperonas Moleculares , Complexo de Proteínas Formadoras de Poros Nucleares , Complexo Dinactina/química , Complexo Dinactina/metabolismo , Dineínas/química , Dineínas/genética , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Conformação Proteica em alfa-HéliceRESUMO
Proteins are found to be involved in interaction with solid surfaces in numerous natural events. Acidic proteins that adsorb to crystal faces of a biomineral to control the growth and morphology of hard tissue are only one example. Deducing the mechanisms of surface recognition exercised by proteins has implications to osteogenesis, pathological calcification and other proteins functions at their adsorbed state. Statherin is an enamel pellicle protein that inhibits hydroxyapatite nucleation and growth, lubricates the enamel surface, and is recognized by oral bacteria in periodontal diseases. Here, we highlight some of the insights we obtained recently using both thermodynamic and solid state NMR measurements to the adsorption process of statherin to hydroxyapatite. We combine macroscopic energy characterization with microscopic structural findings to present our views of protein adsorption mechanisms and the structural changes accompanying it and discuss the implications of these studies to understanding the functions of the protein adsorbed to the enamel surfaces.
Assuntos
Durapatita/química , Proteínas e Peptídeos Salivares/química , Adsorção , Aderência Bacteriana , Calcificação Fisiológica , Cristalização , Película Dentária/química , Humanos , Cinética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Saliva/química , Coloração e Rotulagem , Propriedades de Superfície , TermodinâmicaRESUMO
Acidic proteins found in mineralized tissues act as nature's crystal engineers, where they play a key role in promoting or inhibiting the growth of minerals such as hydroxyapatite (HAP), Ca10(PO4)6(OH)2, the main mineral component of bone and teeth. Key to understanding the structural basis of protein-crystal recognition and protein control of hard tissue growth is the nature of interactions between the protein side chains and the crystal surface. In an earlier work we have measured the proximity of the lysine (K6) side chain in an SN-15 peptide fragment of the salivary protein statherin adsorbed to the Phosphorus-rich surface of HAP using solid-state NMR recoupling experiments. 15N{31P} rotational echo double resonance (REDOR) NMR data on the side-chain nitrogen in K6 gave rise to three different models of protein-surface interaction to explain the experimental data acquired. In this work we extend the analysis of the REDOR data by examining the contribution of interactions between surface phosphorus atoms to the observed 15N REDOR decay. We performed 31P-31P recoupling experiments in HAP and (NH4)2HPO4 (DHP) to explore the nature of dipolar coupled 31P spin networks. These studies indicate that extensive networks of dipolar coupled 31P spins can be represented as stronger effective dipolar couplings, the existence of which must be included in the analysis of REDOR data. We carried out 15N{31P} REDOR in the case of DHP to determine how the size of the dephasing spin network influences the interpretation of the REDOR data. Although use of an extended 31P coupled spin network simulates the REDOR data well, a simplified 31P dephasing system composed of two spins with a larger dipolar coupling also simulates the REDOR data and only perturbs the heteronuclear couplings very slightly. The 31P-31P dipolar couplings between phosphorus nuclei in HAP can be replaced by an effective dipolar interaction of 600 Hz between two 31P spins. We incorporated this coupling and applied the above approach to reanalyze the 15N{31P} REDOR of the lysine side chain approaching the HAP surface and have refined the binding models proposed earlier. We obtain 15N-31P distances between 3.3 and 5 A from these models that are indicative of the possibility of a lysine-phosphate hydrogen bond.
Assuntos
Durapatita/química , Fragmentos de Peptídeos/química , Proteínas e Peptídeos Salivares/química , Simulação por Computador , Cristalografia , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Ligação Proteica , Propriedades de SuperfícieRESUMO
Extracellular matrix proteins regulate hard tissue growth by acting as adhesion sites for cells, by triggering cell signaling pathways, and by directly regulating the primary and/or secondary crystallization of hydroxyapatite, the mineral component of bone and teeth. Despite the key role that these proteins play in the regulation of hard tissue growth in humans, the exact mechanism used by these proteins to recognize mineral surfaces is poorly understood. Interactions between mineral surfaces and proteins very likely involve specific contacts between the lattice and the protein side chains, so elucidation of the nature of interactions between protein side chains and their corresponding inorganic mineral surfaces will provide insight into the recognition and regulation of hard tissue growth. Isotropic chemical shifts, chemical shift anisotropies (CSAs), NMR line-width information, (13)C rotating frame relaxation measurements, as well as direct detection of correlations between (13)C spins on protein side chains and (31)P spins in the crystal surface with REDOR NMR show that, in the peptide fragment derived from the N-terminal 15 amino acids of salivary statherin (i.e., SN-15), the side chain of the phenylalanine nearest the C-terminus of the peptide (F14) is dynamically constrained and oriented near the surface, whereas the side chain of the phenylalanine located nearest to the peptide's N-terminus (F7) is more mobile and is oriented away from the hydroxyapatite surface. The relative dynamics and proximities of F7 and F14 to the surface together with prior data obtained for the side chain of SN-15's unique lysine (i.e., K6) were used to construct a new picture for the structure of the surface-bound peptide and its orientation to the crystal surface.
Assuntos
Durapatita/química , Espectroscopia de Ressonância Magnética/métodos , Fenilalanina/química , Proteínas e Peptídeos Salivares/química , Sequência de Aminoácidos , Cristalização , Dados de Sequência MolecularRESUMO
Magic angle spinning NMR techniques can be used to determine the molecular structure of proteins adsorbed onto polymer and mineral surfaces, but the degree to which the orientation of proteins on surfaces can be uniquely determined by NMR is less well understood. In this manuscript, REDOR data obtained from model systems are analyzed with a view to determine the orientation of rare spins coupled to a lattice populated by strongly coupled spin 1/2 nuclei. When the surface is populated by closely spaced spins, the REDOR dephasing of a rare spin on the protein contact point to the surface is under certain circumstances complicated by contributions from homonuclear dipolar interactions between the spins of the lattice. To study multiple spin effects on the dephasing signal in rotational-echo-double-resonance experiments, we carried out a measurement on crystalline diammonium hydrogen phosphate as a model for a spin system with multiple dipolar interactions. Information about the (31)P-(31)P interactions is gathered from the reference measurement in the experiment. To fit the experimental (15)N and (31)P dephasing data well, it was necessary to account for as many as 6 and 8 spins in simulations, respectively. Using a single spin-pair interaction with an unknown distance yielded a good fit to the (31)P data with a distance of 2.7A that is nearly an Angström shorter than the shortest distance in the crystal structure. Homonuclear couplings are shown to have a significant effect on the expected dephasing.
Assuntos
Cristalografia/métodos , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Modelos Moleculares , Fosfatos/análise , Fosfatos/química , Adsorção , Simulação por Computador , Teste de Materiais/métodos , Conformação Molecular , Propriedades de SuperfícieRESUMO
Hydroxyapatite (HAP) is the main mineral component of teeth. It is well-known that several salivary proteins and peptides bind strongly to HAP to regulate crystal growth. Interactions between a peptide derived from the N-terminal fragment of the salivary protein statherin and HAP were measured utilizing rotational-echo double-resonance (REDOR) nuclear magnetic resonance (NMR). The REDOR measurement from the side chain of the salivary peptide to the HAP surface is complicated by two effects: a possible additional dipolar coupling to a phosphorylated side chain and the potential proximity of phosphorus atoms to each other, resulting in a homonuclear dipolar interaction. Both of these effects were addressed, and the smallest model applicable to our system includes the nitrogen-15 (15N) spin in the lysine side chain and two phosphorus-31 (31P) spins, at least one of which must be from the surface phosphates of the HAP.