Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Microbiol ; 10: 148, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20492686

RESUMO

BACKGROUND: E. coli cells are rich in thiamine, most of it in the form of the cofactor thiamine diphosphate (ThDP). Free ThDP is the precursor for two triphosphorylated derivatives, thiamine triphosphate (ThTP) and the newly discovered adenosine thiamine triphosphate (AThTP). While, ThTP accumulation requires oxidation of a carbon source, AThTP slowly accumulates in response to carbon starvation, reaching approximately 15% of total thiamine. Here, we address the question whether AThTP accumulation in E. coli is triggered by the absence of a carbon source in the medium, the resulting drop in energy charge or other forms of metabolic stress. RESULTS: In minimal M9 medium, E. coli cells produce AThTP not only when energy substrates are lacking but also when their metabolization is inhibited. Thus AThTP accumulates in the presence of glucose, when glycolysis is blocked by iodoacetate, or in the presence lactate, when respiration is blocked by cyanide or anoxia. In both cases, ATP synthesis is impaired, but AThTP accumulation does not appear to be a direct consequence of reduced ATP levels. Indeed, in the CV2 E. coli strain (containing a thermolabile adenylate kinase), the ATP content is very low at 37 degrees C, even in the presence of metabolizable substrates (glucose or lactate) and under these conditions, the cells produce ThTP but not AThTP. Furthermore, we show that ThTP inhibits AThTP accumulation. Therefore, we conclude that a low energy charge is not sufficient to trigger AThTP accumulation and the latter can only accumulate under conditions where no ThTP is synthesized. We further show that AThTP production can also be induced by the uncoupler CCCP but, unexpectedly, this requires the presence of pyruvate or a substrate yielding pyruvate (such a D-glucose or L-lactate). Under the conditions described, AThTP production is not different when RelA or SpoT mutants are used. CONCLUSIONS: In E. coli, AThTP accumulates in response to two different conditions of metabolic stress: lack of energy substrates (or inhibition of their metabolization) and uncoupled pyruvate oxidation. Both conditions prevent bacterial growth. There is no obvious link with the stringent response or catabolite repression.


Assuntos
Trifosfato de Adenosina/metabolismo , Escherichia coli/fisiologia , Estresse Fisiológico , Tiamina Trifosfato/metabolismo , Trifosfato de Adenosina/biossíntese , Carbono/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Meios de Cultura/química , Metabolismo Energético , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Glucose/metabolismo , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Desacopladores/farmacologia
2.
BMC Microbiol ; 8: 16, 2008 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-18215312

RESUMO

BACKGROUND: Thiamine triphosphate (ThTP) exists in most organisms and might play a role in cellular stress responses. In E. coli, ThTP is accumulated in response to amino acid starvation but the mechanism of its synthesis is still a matter of controversy. It has been suggested that ThTP is synthesized by an ATP-dependent specific thiamine diphosphate kinase. However, it is also known that vertebrate adenylate kinase 1 catalyzes ThTP synthesis at a very low rate and it has been postulated that this enzyme is responsible for ThTP synthesis in vivo. RESULTS: Here we show that bacterial, as vertebrate adenylate kinases are able to catalyze ThTP synthesis, but at a rate more than 106-fold lower than ATP synthesis. This activity is too low to explain the high rate of ThTP accumulation observed in E. coli during amino acid starvation. Moreover, bacteria from the heat-sensitive CV2 strain accumulate high amounts of ThTP (>50% of total thiamine) at 37 degrees C despite complete inactivation of adenylate kinase and a subsequent drop in cellular ATP. CONCLUSION: These results clearly demonstrate that adenylate kinase is not responsible for ThTP synthesis in vivo. Furthermore, they show that E. coli accumulate large amounts of ThTP under severe energy stress when ATP levels are very low, an observation not in favor of an ATP-dependent mechanisms for ThTP synthesis.


Assuntos
Adenilato Quinase/metabolismo , Metabolismo Energético , Escherichia coli/enzimologia , Tiamina Trifosfato/metabolismo , Trifosfato de Adenosina/metabolismo , Adenilato Quinase/isolamento & purificação , Escherichia coli/genética , Escherichia coli/fisiologia , Isoenzimas , Inanição
3.
Sci Rep ; 3: 1071, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23323214

RESUMO

In E. coli, thiamine triphosphate (ThTP), a putative signaling molecule, transiently accumulates in response to amino acid starvation. This accumulation requires the presence of an energy substrate yielding pyruvate. Here we show that in intact bacteria ThTP is synthesized from free thiamine diphosphate (ThDP) and P(i), the reaction being energized by the proton-motive force (Δp) generated by the respiratory chain. ThTP production is suppressed in strains carrying mutations in F(1) or a deletion of the atp operon. Transformation with a plasmid encoding the whole atp operon fully restored ThTP production, highlighting the requirement for F(o)F(1)-ATP synthase in ThTP synthesis. Our results show that, under specific conditions of nutritional downshift, F(o)F(1)-ATP synthase catalyzes the synthesis of ThTP, rather than ATP, through a highly regulated process requiring pyruvate oxidation. Moreover, this chemiosmotic mechanism for ThTP production is conserved from E. coli to mammalian brain mitochondria.


Assuntos
Escherichia coli/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Tiamina Trifosfato/biossíntese , Ciclo do Ácido Cítrico , Mutação , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/isolamento & purificação , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo
4.
FEBS J ; 276(12): 3256-68, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19438713

RESUMO

Thiamine and its three phosphorylated derivatives (mono-, di- and triphosphate) occur naturally in most cells. Recently, we reported the presence of a fourth thiamine derivative, adenosine thiamine triphosphate, produced in Escherichia coli in response to carbon starvation. Here, we show that the chemical synthesis of adenosine thiamine triphosphate leads to another new compound, adenosine thiamine diphosphate, as a side product. The structure of both compounds was confirmed by MS analysis and 1H-, 13C- and 31P-NMR, and some of their chemical properties were determined. Our results show an upfield shifting of the C-2 proton of the thiazolium ring in adenosine thiamine derivatives compared with conventional thiamine phosphate derivatives. This modification of the electronic environment of the C-2 proton might be explained by a through-space interaction with the adenosine moiety, suggesting U-shaped folding of adenosine thiamine derivatives. Such a structure in which the C-2 proton is embedded in a closed conformation can be located using molecular modeling as an energy minimum. In E. coli, adenosine thiamine triphosphate may account for 15% of the total thiamine under energy stress. It is less abundant in eukaryotic organisms, but is consistently found in mammalian tissues and some cell lines. Using HPLC, we show for the first time that adenosine thiamine diphosphate may also occur in small amounts in E. coli and in vertebrate liver. The discovery of two natural thiamine adenine compounds further highlights the complexity and diversity of thiamine biochemistry, which is not restricted to the cofactor role of thiamine diphosphate.


Assuntos
Adenina/análogos & derivados , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Tiamina Pirofosfato/química , Tiamina Trifosfato/química , Células 3T3 , Adenina/análise , Adenina/síntese química , Adenina/química , Difosfato de Adenosina/análise , Difosfato de Adenosina/síntese química , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/síntese química , Animais , Química Encefálica , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Escherichia coli/química , Fibroblastos/química , Humanos , Rim/química , Fígado/química , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Moleculares , Estrutura Molecular , Músculo Esquelético/química , Miocárdio/química , Codorniz , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray , Tiamina Pirofosfato/análise , Tiamina Pirofosfato/síntese química , Tiamina Trifosfato/análise , Tiamina Trifosfato/síntese química
5.
Nat Chem Biol ; 3(4): 211-2, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17334376

RESUMO

Several important cofactors are adenine nucleotides with a vitamin as the catalytic moiety. Here, we report the discovery of the first adenine nucleotide containing vitamin B1: adenosine thiamine triphosphate (AThTP, 1), or thiaminylated ATP. We discovered AThTP in Escherichia coli and found that it accumulates specifically in response to carbon starvation, thereby acting as a signal rather than a cofactor. We detected smaller amounts in yeast and in plant and animal tissues.


Assuntos
Trifosfato de Adenosina/isolamento & purificação , Escherichia coli/metabolismo , Tiamina Trifosfato/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Escherichia coli/crescimento & desenvolvimento , Conformação Molecular , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA