Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Org Chem ; 87(3): 1767-1779, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-34756050

RESUMO

The nucleofugality of chloride has been measured in solvent mixtures containing ionic liquids for the first time, allowing reactivity in these solvents to be put in context with molecular solvents. Using well-described electrofuges, solvolysis rate constants were determined in mixtures containing different proportions of ethanol and the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide; the different solvent effects observed as the mixture changed could be explained using interactions of the ionic liquid with species along the reaction coordinate, determined using temperature dependent kinetic studies. The solvolysis data allowed determination of the nucleofugality of chloride in these mixtures, which varied with the proportion of salt in the reaction mixture, demonstrating quantitatively the importance of the amount of ionic liquid in the reaction mixture in determining reaction outcome. Nucleofugality data for chloride were determined in seven further ionic liquids, with the reactivity shown to vary over more than an order of magnitude. This outcome illustrates that the components of the ionic liquid are critical in determining reaction outcome. Overall, this work quantitatively extends the understanding of solvent effects in ionic liquids and demonstrates the potential for such information to be used to rationally select an ionic liquid to control reaction outcome.

2.
Org Biomol Chem ; 18(28): 5442-5452, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32638805

RESUMO

The reactions of an acetobromogalactose in mixtures of methanol and one of seven different ionic liquids with varying constituent ions were studied. In general, small amounts of ionic liquid in the reaction mixture led to increases in the rate constant compared to methanol, whilst large amounts of ionic liquid led to decreases in the rate constant; this outcome differs significantly from previous reactions proceeding through this mechansim. Temperature dependent kinetic studies indicated that the dominant interaction driving these changes was between the ionic liquid and the transition state of the process. Through considering solvent parameters of ionic liquids, a relationship was found between the changes in the rate constant and both the hydrogen bond accepting ability and polarisability of the solvent, indicating that the interactions affecting reaction outcome are both specific and non-specific in nature; once more, these interactions were different to those observed in previous similar reactions. By changing the amount of ionic liquid in the reaction mixture, additional products not seen in the molecular solvent case were observed, the ratios of which are dependent on the anion of the ionic liquid and the proportion of ionic liquid in the reaction mixture. This demonstrates the importance of considering solvent effects on both the rate and product determining steps and the potential application of such changes is discussed.

3.
Phys Chem Chem Phys ; 22(40): 23009-23018, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33043942

RESUMO

Rate constants for a bimolecular nucleophilic substitution (SN2) process in a range of ionic liquids are correlated with calculated parameters associated with the charge localisation on the cation of the ionic liquid (including the molecular electrostatic potential). Simple linear regression models proved effective, though the interdependency of the descriptors needs to be taken into account when considering generality. A series of ionic liquids were then prepared and evaluated as solvents for the same process; this data set was rationally chosen to incorporate homologous series (to evaluate systematic variation) and functionalities not available in the original data set. These new data were used to evaluate and refine the original models, which were expanded to include simple artificial neural networks. Along with showing the importance of an appropriate data set and the perils of overfitting, the work demonstrates that such models can be used to reliably predict ionic liquid solvent effects on an organic process, within the limits of the data set.

4.
Org Biomol Chem ; 17(42): 9336-9342, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31612896

RESUMO

A unimolecular nucleophilic substitution reaction that proceeds through a xanthylium carbocation was studied in seven ionic liquid solvents. It was found that the general trend in the rate constant with changing proportion of ionic liquid in the reaction mixture was different to that seen for other unimolecular processes, with the rate constant increasing as more ionic liquid was added to the reaction mixture. A significant correlation was found between the natural logarithm of the rate constant and a combination of the Kamlet-Taft solvent parameters. This relationship indicated that the principal interaction involved hydrogen bonding between the ionic liquid and some species along the reaction coordinate. Further, this correlation enables prediction of the effects that other ionic liquids will have on this, and other, reactions that proceed through a similar intermediate.

5.
Org Biomol Chem ; 17(3): 675-682, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30601540

RESUMO

A unimolecular substitution process was studied in five different ionic liquids, with systematic variation of either the cation or anion, in order to determine the factors leading to the increase in the rate constant for the process relative to acetonitrile. It was found that both components of the ionic liquid, and the proportion of the salt in the reaction mixture, affect the rate constant. Activation parameters determined for the process suggest that there is a balance between interactions of the components of the ionic liquid with both starting material and transition state. A correlation was found between the rate constant and a combination of Kamlet-Taft solvent parameters; with the polarisability of the solvent being the most significant factor. As this reaction proceeds through both unimolecular and bimolecular pathways, competition experiments determined that the unimolecular pathway for the reaction can be favoured using small amounts of ionic liquid in the reaction mixture, demonstrating the potential to control reaction mechanisms using ionic liquids.

6.
Org Biomol Chem ; 17(41): 9243-9250, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31599321

RESUMO

The effects of solvate ionic liquids as solvents have been considered for two substitution processes where the solvent effects of typical ionic liquids have been extensively investigated previously; the bimolecular nucleophilic substitution (SN2) reaction between pyridine and benzyl bromide and the nucleophilic aromatic substitution (SNAr) reaction between ethanol and 1-fluoro-2,4-dinitrobenzene. It was found that use of solvate ionic liquids gave rise to similar trends in the activation parameters for both substitution processes as typical ionic liquids, implying the microscopic interactions responsible for the effects were the same. However, different effects on the rate constants compared to typical ionic liquids were observed due to the changes in the balance of enthalpic and entropic contributions to the observed rate constants. From these data it is clear that the reaction outcome for both of these substitution reactions fall within the 'predictive framework' established in previous studies with a cautionary tale or two of their own to add to the general knowledge of ionic liquid solvent effects for these processes, particularly with respect to potential reactivity of the solvate ionic liquids themselves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA