Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pediatr Allergy Immunol ; 23(3): 265-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22300455

RESUMO

BACKGROUND: In mammals, early-life environmental variations appear to affect microbial colonization and therefore competent immune development, and exposure to farm environments in infants has been inversely correlated with allergy development. Modelling these effects using manipulation of neonatal rodents is difficult due to their dependency on the mother, but the relatively independent piglet is increasingly identified as a valuable translational model for humans. This study was designed to correlate immune regulation in piglets with early-life environment. METHODS: Piglets were nursed by their mother on a commercial farm, while isolator-reared siblings were formula fed. Fluorescence immunohistology was used to quantify T-reg and effector T-cell populations in the intestinal lamina propria and the systemic response to food proteins was quantified by capture ELISA. RESULTS: There was more CD4(+) and CD4(+) CD25(+) effector T-cell staining in the intestinal mucosa of the isolator-reared piglets compared with their farm-reared counterparts. In contrast, these isolator-reared piglets had a significantly reduced CD4(+) CD25(+) Foxp3(+) regulatory T-cell population compared to farm-reared littermates, resulting in a significantly higher T-reg-to-effector ratio in the farm animals. Consistent with these findings, isolator-reared piglets had an increased serum IgG anti-soya response to novel dietary soya protein relative to farm-reared piglets. CONCLUSION: Here, we provide the first direct evidence, derived from intervention, that components of the early-life environment present on farms profoundly affects both local development of regulatory components of the mucosal immune system and immune responses to food proteins at weaning. We propose that neonatal piglets provide a tractable model which allows maternal and treatment effects to be statistically separated.


Assuntos
Agricultura , Animais Recém-Nascidos/imunologia , Exposição Ambiental , Modelos Animais , Suínos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Humanos , Hipersensibilidade/imunologia , Sistema Imunitário , Imunidade nas Mucosas , Desmame
2.
BMC Biol ; 7: 79, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19930542

RESUMO

BACKGROUND: Early microbial colonization of the gut reduces the incidence of infectious, inflammatory and autoimmune diseases. Recent population studies reveal that childhood hygiene is a significant risk factor for development of inflammatory bowel disease, thereby reinforcing the hygiene hypothesis and the potential importance of microbial colonization during early life. The extent to which early-life environment impacts on microbial diversity of the adult gut and subsequent immune processes has not been comprehensively investigated thus far. We addressed this important question using the pig as a model to evaluate the impact of early-life environment on microbe/host gut interactions during development. RESULTS: Genetically-related piglets were housed in either indoor or outdoor environments or in experimental isolators. Analysis of over 3,000 16S rRNA sequences revealed major differences in mucosa-adherent microbial diversity in the ileum of adult pigs attributable to differences in early-life environment. Pigs housed in a natural outdoor environment showed a dominance of Firmicutes, in particular Lactobacillus, whereas animals housed in a hygienic indoor environment had reduced Lactobacillus and higher numbers of potentially pathogenic phylotypes. Our analysis revealed a strong negative correlation between the abundance of Firmicutes and pathogenic bacterial populations in the gut. These differences were exaggerated in animals housed in experimental isolators. Affymetrix microarray technology and Real-time Polymerase Chain Reaction revealed significant gut-specific gene responses also related to early-life environment. Significantly, indoor-housed pigs displayed increased expression of Type 1 interferon genes, Major Histocompatibility Complex class I and several chemokines. Gene Ontology and pathway analysis further confirmed these results. CONCLUSION: Early-life environment significantly affects both microbial composition of the adult gut and mucosal innate immune function. We observed that a microbiota dominated by lactobacilli may function to maintain mucosal immune homeostasis and limit pathogen colonization.


Assuntos
Biodiversidade , Meio Ambiente , Íleo/microbiologia , Mucosa Intestinal/microbiologia , Lactobacillus/genética , Suínos/microbiologia , Animais , Íleo/imunologia , Mucosa Intestinal/imunologia , Lactobacillus/classificação , Modelos Animais , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , RNA Ribossômico 16S/análise , Análise de Sequência de RNA
3.
Front Immunol ; 9: 1061, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868021

RESUMO

Epidemiological studies have demonstrated that exposure to farm environments during childhood can be linked to reductions in the incidence of immune disorders, but generating an appropriate model is difficult. 108 half-sibling piglets were born on either extensive (outdoor) or intensive (indoor) farms: at 1 day old, a subset of piglets from each litter were transferred to a high-hygiene isolator facility to create differences in rearing environment either during birth/first day or during the subsequent 56 days of life. Interactions between CD14, CD16, MHCIIDR, and capillary endothelium were assessed using four-color quantitative fluorescence immunohistology. Effects of birth and rearing environment on the antigen-presenting microenvironment of the proximal and distal jejunum (professional and stromal) were apparent at 5, 28, and 56 days after birth However, effects on CD4+CD25+Foxp3+ regulatory T-cells (Tregs) in the intestinal mucosa were apparent around weaning at 28 days but had disappeared by 56 days. These Tregs were reduced in the isolator piglets compared to their farm-reared siblings, but this effect was less marked in piglets born on the extensive farm and required administration of antibiotics. Our results suggest that there may be at least two windows of opportunity in which different farm environments were influencing immune development: one during the perinatal period (up to the first day of life), and one during later infancy. Furthermore, the differences on Tregs suggest that the effects of early life influences may be particularly critical around weaning.


Assuntos
Adaptação Fisiológica , Antibacterianos/farmacologia , Exposição Ambiental , Fazendas , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Animais , Animais Recém-Nascidos , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Biomarcadores , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Imunofluorescência , Imunidade nas Mucosas/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Suínos , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Desmame
4.
PLoS One ; 6(12): e28279, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22216092

RESUMO

BACKGROUND: Acquisition of the intestinal microbiota in early life corresponds with the development of the mucosal immune system. Recent work on caesarean-delivered infants revealed that early microbial composition is influenced by birthing method and environment. Furthermore, we have confirmed that early-life environment strongly influences both the adult gut microbiota and development of the gut immune system. Here, we address the impact of limiting microbial exposure after initial colonization on the development of adult gut immunity. METHODOLOGY/PRINCIPAL FINDINGS: Piglets were born in indoor or outdoor rearing units, allowing natural colonization in the immediate period after birth, prior to transfer to high-health status isolators. Strikingly, gut closure and morphological development were strongly affected by isolator-rearing, independent of indoor or outdoor origins of piglets. Isolator-reared animals showed extensive vacuolation and disorganization of the gut epithelium, inferring that normal gut closure requires maturation factors present in maternal milk. Although morphological maturation and gut closure were delayed in isolator-reared animals, these hard-wired events occurred later in development. Type I IFN, IL-22, IL-23 and Th17 pathways were increased in indoor-isolator compared to outdoor-isolator animals during early life, indicating greater immune activation in pigs originating from indoor environments reflecting differences in the early microbiota. This difference was less apparent later in development due to enhanced immune activation and convergence of the microbiota in all isolator-reared animals. This correlated with elevation of Type I IFN pathways in both groups, although T cell pathways were still more affected in indoor-reared animals. CONCLUSIONS/SIGNIFICANCE: Environmental factors, in particular microbial exposure, influence expression of a large number of immune-related genes. However, the homeostatic effects of microbial colonization in outdoor environments require sustained microbial exposure throughout development. Gut development in high-hygiene environments negatively impacts on normal succession of the gut microbiota and promotes innate immune activation which may impair immune homeostasis.


Assuntos
Animais Recém-Nascidos , Biodiversidade , Imunidade nas Mucosas , Intestinos/microbiologia , Suínos , Animais , Sequência de Bases , Primers do DNA , Íleo/microbiologia , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
5.
PLoS One ; 6(12): e28284, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22164261

RESUMO

BACKGROUND: Early gut colonization events are purported to have a major impact on the incidence of infectious, inflammatory and autoimmune diseases in later life. Hence, factors which influence this process may have important implications for both human and animal health. Previously, we demonstrated strong influences of early-life environment on gut microbiota composition in adult pigs. Here, we sought to further investigate the impact of limiting microbial exposure during early life on the development of the pig gut microbiota. METHODOLOGY/PRINCIPAL FINDINGS: Outdoor- and indoor-reared animals, exposed to the microbiota in their natural rearing environment for the first two days of life, were transferred to an isolator facility and adult gut microbial diversity was analyzed by 16S rRNA gene sequencing. From a total of 2,196 high-quality 16S rRNA gene sequences, 440 phylotypes were identified in the outdoor group and 431 phylotypes in the indoor group. The majority of clones were assigned to the four phyla Firmicutes (67.5% of all sequences), Proteobacteria (17.7%), Bacteroidetes (13.5%) and to a lesser extent, Actinobacteria (0.1%). Although the initial maternal and environmental microbial inoculum of isolator-reared animals was identical to that of their naturally-reared littermates, the microbial succession and stabilization events reported previously in naturally-reared outdoor animals did not occur. In contrast, the gut microbiota of isolator-reared animals remained highly diverse containing a large number of distinct phylotypes. CONCLUSIONS/SIGNIFICANCE: The results documented here indicate that establishment and development of the normal gut microbiota requires continuous microbial exposure during the early stages of life and this process is compromised under conditions of excessive hygiene.


Assuntos
Trato Gastrointestinal/microbiologia , Metagenoma/fisiologia , Animais , Biodiversidade , Cruzamentos Genéticos , Biblioteca Gênica , Higiene , Mucosa Intestinal/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA