Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2997, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225710

RESUMO

The neurophysiological mechanisms in the human amygdala that underlie post-traumatic stress disorder (PTSD) remain poorly understood. In a first-of-its-kind pilot study, we recorded intracranial electroencephalographic data longitudinally (over one year) in two male individuals with amygdala electrodes implanted for the management of treatment-resistant PTSD (TR-PTSD) under clinical trial NCT04152993. To determine electrophysiological signatures related to emotionally aversive and clinically relevant states (trial primary endpoint), we characterized neural activity during unpleasant portions of three separate paradigms (negative emotional image viewing, listening to recordings of participant-specific trauma-related memories, and at-home-periods of symptom exacerbation). We found selective increases in amygdala theta (5-9 Hz) bandpower across all three negative experiences. Subsequent use of elevations in low-frequency amygdala bandpower as a trigger for closed-loop neuromodulation led to significant reductions in TR-PTSD symptoms (trial secondary endpoint) following one year of treatment as well as reductions in aversive-related amygdala theta activity. Altogether, our findings provide early evidence that elevated amygdala theta activity across a range of negative-related behavioral states may be a promising target for future closed-loop neuromodulation therapies in PTSD.


Assuntos
Gastrópodes , Transtornos de Estresse Pós-Traumáticos , Humanos , Masculino , Animais , Transtornos de Estresse Pós-Traumáticos/terapia , Projetos Piloto , Emoções , Afeto , Tonsila do Cerebelo
2.
Nat Neurosci ; 23(2): 209-216, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31932769

RESUMO

Midbrain dopamine (DA) neurons encode both reward- and movement-related events and are implicated in disorders of reward processing as well as movement. Consequently, disentangling the contribution of DA neurons in reinforcing versus generating movements is challenging and has led to lasting controversy. In this study, we dissociated these functions by parametrically varying the timing of optogenetic manipulations in a Pavlovian conditioning task and examining the influence on anticipatory licking before reward delivery. Inhibiting both ventral tegmental area and substantia nigra pars compacta DA neurons in the post-reward period had a significantly greater behavioral effect than inhibition in the pre-reward period of the task. Furthermore, the contribution of DA neurons to behavior decreased linearly as a function of elapsed time after reward. Together, the results indicate a temporally restricted role of DA neurons primarily related to reinforcing stimulus-reward associations and suggest that directly generating movements is a comparatively less important function.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Mesencéfalo/fisiologia , Movimento/fisiologia , Recompensa , Animais , Comportamento Animal/fisiologia , Condicionamento Clássico , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA