Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Opin Lipidol ; 34(6): 278-286, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37732779

RESUMO

PURPOSE OF REVIEW: Several large studies have shown increased mortality due to all-causes and to atherosclerotic cardiovascular disease. In most clinical settings, plasma HDL-cholesterol is determined as a sum of free cholesterol and cholesteryl ester, two molecules with vastly different metabolic itineraries. We examine the evidence supporting the concept that the pathological effects of elevations of plasma HDL-cholesterol are due to high levels of the free cholesterol component of HDL-C. RECENT FINDINGS: In a small population of humans, a high plasma HDL-cholesterol is associated with increased mortality. Similar observations in the HDL-receptor deficient mouse (Scarb1 -/- ), a preclinical model of elevated HDL-C, suggests that the pathological component of HDL in these patients is an elevated plasma HDL-FC. SUMMARY: Collective consideration of the human and mouse data suggests that clinical trials, especially in the setting of high plasma HDL, should measure free cholesterol and cholesteryl esters and not just total cholesterol.


Assuntos
Aterosclerose , Hipercolesterolemia , Humanos , Animais , Camundongos , HDL-Colesterol , Ésteres do Colesterol/metabolismo , Colesterol , Aterosclerose/genética , Proteínas de Transferência de Ésteres de Colesterol
2.
J Lipid Res ; 64(11): 100456, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821077

RESUMO

Compared with WT mice, HDL receptor-deficient (Scarb1-/-) mice have higher plasma levels of free cholesterol (FC)-rich HDL and exhibit multiple pathologies associated with a high mol% FC in ovaries, platelets, and erythrocytes, which are reversed by lowering HDL. Bacterial serum opacity factor (SOF) catalyzes the opacification of plasma by targeting and quantitatively converting HDL to neo HDL (HDL remnant), a cholesterol ester-rich microemulsion, and lipid-free APOA1. SOF delivery with an adeno-associated virus (AAVSOF) constitutively lowers plasma HDL-FC and reverses female infertility in Scarb1-/- mice in an HDL-dependent way. We tested whether AAVSOF delivery to Scarb1-/- mice will normalize erythrocyte morphology in an HDL-FC-dependent way. We determined erythrocyte morphology and FC content (mol%) in three groups-WT, untreated Scarb1-/- (control), and Scarb1-/- mice receiving AAVSOF-and correlated these with their respective HDL-mol% FC. Plasma-, HDL-, and tissue-lipid compositions were also determined. Plasma- and HDL-mol% FC positively correlated across all groups. Among Scarb1-/- mice, AAVSOF treatment normalized reticulocyte number, erythrocyte morphology, and erythrocyte-mol% FC. Erythrocyte-mol% FC positively correlated with HDL-mol% FC and with both the number of reticulocytes and abnormal erythrocytes. AAVSOF treatment also reduced FC of extravascular tissues to a lesser extent. HDL-FC spontaneously transfers from plasma HDL to cell membranes. AAVSOF treatment lowers erythrocyte-FC and normalizes erythrocyte morphology and lipid composition by reducing HDL-mol% FC.


Assuntos
Colesterol , Peptídeo Hidrolases , Feminino , Camundongos , Animais , HDL-Colesterol , Ésteres do Colesterol/metabolismo , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo
3.
J Lipid Res ; 64(2): 100327, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36596339

RESUMO

Human female infertility, 20% of which is idiopathic, is a public health problem for which better diagnostics and therapeutics are needed. A novel cause of infertility emerged from studies of female mice deficient in the HDL receptor gene (Scarb1). These mice are infertile and have high plasma HDL cholesterol (C) concentrations, due to elevated HDL-free cholesterol (FC), which transfers from HDL to all tissues. Previous studies have indicated that oral delivery of probucol, an HDL-lowering drug, to female Scarb1-/- mice reduces plasma HDL-C concentrations and rescues fertility. Additionally, serum opacity factor (SOF), a bacterial virulence factor, disrupts HDL structure, and bolus SOF injection into mice reduces plasma HDL-C concentrations. Here, we discovered that delivering SOF to female Scarb1-/- mice with an adeno-associated virus (AAVSOF) induces constitutive SOF expression, reduces HDL-FC concentrations, and rescues fertility while normalizing ovary morphology. Although AAVSOF did not alter ovary-FC content, the ovary-mol% FC correlated with plasma HDL-mol% FC in a fertility-dependent way. Therefore, reversing the abnormal plasma microenvironment of high plasma HDL-mol% FC in female Scarb1-/- mice rescues fertility. These data provide the rationale to search for similar mechanistic links between HDL-mol% FC and infertility and the rescue of fertility in women by reducing plasma HDL-mol% FC.


Assuntos
Colesterol , Infertilidade , Animais , Feminino , Humanos , Camundongos , Disponibilidade Biológica , Colesterol/metabolismo , HDL-Colesterol , Fertilidade , Receptores Depuradores Classe B/genética
4.
Arterioscler Thromb Vasc Biol ; 41(10): e453-e467, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34380332

RESUMO

Objective: Overall and atherosclerosis-associated mortality is elevated in humans with very high HDL (high-density lipoprotein) cholesterol concentrations. Mice with a deficiency of the HDL receptor, Scarb1 (scavenger receptor class B type 1), are a robust model of this phenotype and exhibit several additional pathologies. We hypothesized that the previously reported high plasma concentration of free cholesterol (FC)-rich HDL in Scarb1-/- mice produces a state of high HDL-FC bioavailability that increases whole-body FC and dysfunction in multiple tissue sites. Approach and Results: The higher mol% FC in Scarb1-/- versus WT (wild type) HDL (41.1 versus 16.0 mol%) affords greater FC bioavailability for transfer to multiple sites. Plasma clearance of autologous HDL-FC mass was faster in WT versus Scarb1-/- mice. FC influx from Scarb1-/- HDL to LDL (low-density lipoprotein) and J774 macrophages was greater ([almost equal to]4x) than that from WT HDL, whereas FC efflux capacity was similar. The higher mol% FC of ovaries, erythrocytes, heart, and macrophages of Scarb1-/- versus WT mice is associated with previously reported female infertility, impaired cell maturation, cardiac dysfunction, and atherosclerosis. The FC contents of other tissues were similar in the two genotypes, and these tissues were not associated with any overt pathology. In addition to the differences between WT versus Scarb1-/- mice, there were many sex-dependent differences in tissue-lipid composition and plasma FC clearance rates. Conclusions: Higher HDL-FC bioavailability among Scarb1-/- versus WT mice drives increased FC content of multiple cell sites and is a potential biomarker that is mechanistically linked to multiple pathologies.


Assuntos
Aterosclerose/metabolismo , Colesterol/metabolismo , Macrófagos/metabolismo , Receptores Depuradores Classe B/deficiência , Animais , Aterosclerose/genética , Aterosclerose/patologia , Disponibilidade Biológica , Linhagem Celular , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Feminino , Humanos , Cinética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Placa Aterosclerótica , Receptores Depuradores Classe B/genética , Fatores Sexuais , Distribuição Tecidual
5.
Nanomedicine ; 33: 102361, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33540069

RESUMO

Liposome-based nanoparticles (NPs) comprised mostly of phospholipids (PLs) have been developed to deliver diagnostic and therapeutic agents. Whereas reassembled plasma lipoproteins have been tested as NP carriers of hydrophobic molecules, they are unstable because the components can spontaneously transfer to other PL surfaces-cell membranes and lipoproteins-and can be degraded by plasma lipases. Here we review two strategies for NP stabilization. One is to use PLs that contain long acyl-chains: according to a quantitative thermodynamic model and in vivo tests, increasing the chain length of a PL reduces the spontaneous transfer rate and increases plasma lifetime. A second strategy is to substitute ether for ester bonds which makes the PLs lipase resistant. We conclude with recommendations of simple ex vivo and in vitro tests of NP stability that should be conducted before in vivo tests are begun.


Assuntos
Preparações de Ação Retardada/química , Lipossomos/química , Nanopartículas/química , Fosfolipídeos/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Liberação Controlada de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Lipoproteínas/sangue , Lipoproteínas/metabolismo , Lipossomos/sangue , Nanomedicina , Relação Estrutura-Atividade , Termodinâmica
6.
Arterioscler Thromb Vasc Biol ; 38(9): 1997-2006, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30026278

RESUMO

Objective- Atherosclerosis studies in Ldlr knockout mice require breeding to homozygosity and congenic status on C57BL6/J background, a process that is both time and resource intensive. We aimed to develop a new method for generating atherosclerosis through somatic deletion of Ldlr in livers of adult mice. Approach and Results- Overexpression of PCSK9 (proprotein convertase subtilisin/kexin type 9) is currently used to study atherosclerosis, which promotes degradation of LDLR (low-density lipoprotein receptor) in the liver. We sought to determine whether CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated 9) could also be used to generate atherosclerosis through genetic disruption of Ldlr in adult mice. We engineered adeno-associated viral (AAV) vectors expressing Staphylococcus aureus Cas9 and a guide RNA targeting the Ldlr gene (AAV-CRISPR). Both male and female mice received either (1) saline, (2) AAV-CRISPR, or (3) AAV-hPCSK9 (human PCSK9)-D374Y. A fourth group of germline Ldlr-KO mice was included for comparison. Mice were placed on a Western diet and followed for 20 weeks to assess plasma lipids, PCSK9 protein levels, atherosclerosis, and editing efficiency. Disruption of Ldlr with AAV-CRISPR was robust, resulting in severe hypercholesterolemia and atherosclerotic lesions in the aorta. AAV-hPCSK9 also produced hypercholesterolemia and atherosclerosis as expected. Notable sexual dimorphism was observed, wherein AAV-CRISPR was superior for Ldlr removal in male mice, while AAV-hPCSK9 was more effective in female mice. Conclusions- This all-in-one AAV-CRISPR vector targeting Ldlr is an effective and versatile tool to model atherosclerosis with a single injection and provides a useful alternative to the use of germline Ldlr-KO mice.


Assuntos
Aterosclerose/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Modelos Animais de Doenças , Vetores Genéticos , Receptores de LDL/genética , Adenoviridae , Animais , Aterosclerose/sangue , Proteína 9 Associada à CRISPR/genética , Feminino , Edição de Genes , Expressão Gênica , Hipercolesterolemia/sangue , Hipercolesterolemia/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pró-Proteína Convertase 9/sangue , Pró-Proteína Convertase 9/genética , Receptores de LDL/sangue
7.
J Biol Chem ; 292(21): 8864-8873, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28373285

RESUMO

Reverse cholesterol transport (transfer of macrophage-cholesterol in the subendothelial space of the arterial wall to the liver) is terminated by selective high density lipoprotein (HDL)-cholesteryl ester (CE) uptake, mediated by scavenger receptor class B, type 1 (SR-B1). We tested the validity of two models for this process: "gobbling," i.e. one-step transfer of all HDL-CE to the cell and "nibbling," multiple successive cycles of SR-B1-HDL association during which a few CEs transfer to the cell. Concurrently, we compared cellular uptake of apoAI with that of apoAII, which is more lipophilic than apoAI, using HDL-[3H]CE labeled with [125I]apoAI or [125I]apoAII. The studies were conducted in CHO-K1 and CHO-ldlA7 cells (LDLR-/-) with (CHO-SR-B1) and without SR-B1 overexpression and in human Huh7 hepatocytes. Relative to CE, both apoAI and apoAII were excluded from uptake by all cells. However, apoAII was more highly excluded from uptake (2-4×) than apoAI. To distinguish gobbling versus nibbling mechanisms, media from incubations of HDL with CHO-SR-B1 cells were analyzed by non-denaturing PAGE, size-exclusion chromatography, and the distribution of apoAI, apoAII, cholesterol, and phospholipid among HDL species as a function of incubation time. HDL size gradually decreased, i.e. nibbling, with the concurrent release of lipid-free apoAI; apoAII was retained in an HDL remnant. Our data support an SR-B1 nibbling mechanism that is similar to that of streptococcal serum opacity factor, which also selectively removes CE and releases apoAI, leaving an apoAII-rich remnant.


Assuntos
Apolipoproteína A-II/metabolismo , Ésteres do Colesterol/metabolismo , Hepatócitos/metabolismo , Lipoproteínas HDL/metabolismo , Receptores Depuradores Classe B/metabolismo , Animais , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Apolipoproteína A-II/genética , Células CHO , Ésteres do Colesterol/genética , Cricetinae , Cricetulus , Humanos , Lipoproteínas HDL/genética , Receptores Depuradores Classe B/genética
8.
Arterioscler Thromb Vasc Biol ; 37(12): 2260-2270, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29074589

RESUMO

OBJECTIVE: Reverse cholesterol transport comprises cholesterol efflux from ABCA1-expressing macrophages to apolipoprotein (apo) AI, giving nascent high-density lipoprotein (nHDL), esterification of nHDL-free cholesterol (FC), selective hepatic extraction of HDL lipids, and hepatic conversion of HDL cholesterol to bile salts, which are excreted. We tested this model by identifying the fates of nHDL-[3H]FC, [14C] phospholipid (PL), and [125I]apo AI in serum in vitro and in vivo. APPROACH AND RESULTS: During in vitro incubation of human serum, nHDL-[3H]FC and [14C]PL rapidly transfer to HDL and low-density lipoproteins (t1/2=2-7 minutes), whereas nHDL-[125I]apo AI transfers solely to HDL (t1/2<10 minutes) and to the lipid-free form (t1/2>480 minutes). After injection into mice, nHDL-[3H]FC and [14C]PL rapidly transfer to liver (t1/2=≈2-3 minutes), whereas apo AI clears with t1/2=≈460 minutes. The plasma nHDL-[3H]FC esterification rate is slow (0.46%/h) compared with hepatic uptake. PL transfer protein enhances nHDL-[14C]PL but not nHDL-[3H]FC transfer to cultured Huh7 hepatocytes. CONCLUSIONS: nHDL-FC, PL, and apo AI enter different pathways in vivo. Most nHDL-[3H]FC and [14C]PL are rapidly extracted by the liver via SR-B1 (scavenger receptor class B member 1) and spontaneous transfer; hepatic PL uptake is promoted by PL transfer protein. nHDL-[125I]apo AI transfers to HDL and to the lipid-free form that can be recycled to nHDL formation. Cholesterol esterification by lecithin:cholesterol acyltransferase is a minor process in nHDL metabolism. These findings could guide the design of therapies that better mobilize peripheral tissue-FC to hepatic disposal.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Apolipoproteína A-I/sangue , HDL-Colesterol/sangue , Lipoproteínas de Alta Densidade Pré-beta/sangue , Transportador 1 de Cassete de Ligação de ATP/genética , Animais , Biomarcadores/sangue , Linhagem Celular , Ésteres do Colesterol/sangue , Cromatografia em Gel , Meia-Vida , Hepatócitos/metabolismo , Humanos , Cinética , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Tamanho da Partícula , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Fosfolipídeos/sangue , Transfecção
9.
Biochim Biophys Acta ; 1861(11): 1787-1795, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27594697

RESUMO

Although human plasma high density lipoproteins (HDL) concentrations negatively correlate with atherosclerotic cardiovascular disease, underlying mechanisms are unknown. Thus, there is continued interest in HDL structure and functionality. Numerous plasma factors disrupt HDL structure while inducing the release of lipid free apolipoprotein (apo) AI. Given that HDL is an unstable particle residing in a kinetic trap, we tested whether HDL could be stabilized by acylation with acetyl and hexanoyl anhydrides, giving AcHDL and HexHDL respectively. Lysine analysis with fluorescamine showed that AcHDL and HexHDL respectively contained 11 acetyl and 19 hexanoyl groups. Tests with biological and physicochemical perturbants showed that HexHDL was more stable than HDL to perturbant-induced lipid free apo AI formation. Like the reaction of streptococcal serum opacity factor against HDL, the interaction of HDL with its receptor, scavenger receptor class B member 1 (SR-B1), removes CE from HDL. Thus, we tested and validated the hypothesis that selective uptake of HexHDL-[3H]CE by Chinese Hamster Ovary cells expressing SR-B1 is less than that of HDL-[3H]CE; thus, selective SR-B1 uptake of HDL-CE depends on HDL instability. However, in mice, plasma clearance, hepatic uptake and sterol secretion into bile were faster from HexHDL-[3H]CE than from HDL-[3H]CE. Collectively, our data show that acylation increases HDL stability and that the reaction of plasma factors with HDL and SR-B1-mediated uptake are reduced by increased HDL stability. In vivo data suggest that HexHDL promotes charge-dependent reverse cholesterol transport, by a mechanism that increases hepatic sterol uptake via non SR-B1 receptors, thereby increasing bile acid output.


Assuntos
Lipoproteínas HDL/sangue , Lisina/metabolismo , Acilação , Animais , Bile/metabolismo , Células CHO , Ésteres do Colesterol/metabolismo , Cromatografia em Gel , Cricetinae , Cricetulus , Vesícula Biliar/metabolismo , Humanos , Cinética , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Peso Molecular , Peptídeo Hidrolases , Proteínas de Transferência de Fosfolipídeos/metabolismo , Estabilidade Proteica
10.
Biochim Biophys Acta ; 1861(3): 196-204, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26709142

RESUMO

Plasma high density lipoprotein-cholesterol (HDL-C) concentrations negatively correlate with atherosclerotic cardiovascular disease. HDL is thought to have several atheroprotective functions, which are likely distinct from the epidemiological inverse relationship between HDL-C levels and risk. Specifically, strategies that reduce HDL-C while promoting reverse cholesterol transport (RCT) may have therapeutic value. The major product of the serum opacity factor (SOF) reaction versus HDL is a cholesteryl ester (CE)-rich microemulsion (CERM), which contains apo E and the CE of ~400,000 HDL particles. Huh7 hepatocytes take up CE faster when delivered as CERM than as HDL, in part via the LDL-receptor (LDLR). Here we compared the final RCT step, hepatic uptake and subsequent intracellular processing to cholesterol and bile salts for radiolabeled HDL-, CERM- and LDL-CE by Huh7 cells and in vivo in C57BL/6J mice. In Huh7 cells, uptake from LDL was greater than from CERM (2-4X) and HDL (5-10X). Halftimes for [(14)C]CE hydrolysis were 3.0±0.2, 4.4±0.6 and 5.4±0.7h respectively for HDL, CERM and LDL-CE. The fraction of sterols secreted as bile acids was ~50% by 8h for all three particles. HDL, CERM and LDL-CE metabolism in mice showed efficient plasma clearance of CERM-CE, liver uptake and metabolism, and secretion as bile acids into the gall bladder. This work supports the therapeutic potential of the SOF reaction, which diverts HDL-CE to the LDLR, thereby increasing hepatic CE uptake, and sterol disposal as bile acids.


Assuntos
Anticolesterolemiantes/farmacologia , Ácidos e Sais Biliares/metabolismo , Ésteres do Colesterol/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Peptídeo Hidrolases/farmacologia , Animais , Apolipoproteínas E/metabolismo , Linhagem Celular Tumoral , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Regulação da Expressão Gênica , Humanos , Hidrólise , Cinética , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Endogâmicos C57BL
11.
Biophys J ; 110(4): 810-6, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26743047

RESUMO

Early forms of high-density lipoproteins (HDL), nascent HDL, are formed by the interaction of apolipoprotein AI with macrophage and hepatic ATP-binding cassette transporter member 1. Various plasma activities convert nascent to mature HDL, comprising phosphatidylcholine (PC) and cholesterol, which are selectively removed by hepatic receptors. This process is important in reducing the cholesterol burden of arterial wall macrophages, an important cell type in all stages of atherosclerosis. Interaction of apolipoprotein AI with dimyristoyl (DM)PC forms reconstituted (r)HDL, which is a good model of nascent HDL. rHDL have been used as an antiathersclerosis therapy that enhances reverse cholesterol transport in humans and animal models. Thus, identification of the structure of rHDL would inform about that of nascent HDL and how rHDL improves reverse cholesterol transport in an atheroprotective way. Early studies of rHDL suggested a discoidal structure, which included pairs of antiparallel helices of apolipoprotein AI circumscribing a phospholipid bilayer. Another rHDL model based on small angle neutron scattering supported a double superhelical structure. Herein, we report a cryo-electron microscopy-based model of a large rHDL formed spontaneously from apolipoprotein AI, cholesterol, and excess DMPC and isolated to near homogeneity. After reconstruction we obtained an rHDL structure comprising DMPC, cholesterol, and apolipoprotein AI (423:74:1 mol/mol) forming a discoidal particle 360 Å in diameter and 45 Å thick; these dimensions are consistent with the stoichiometry of the particles. Given that cryo-electron microscopy directly observes projections of individual rHDL particles in different orientations, we can unambiguously state that rHDL particles are protein bounded discoidal bilayers.


Assuntos
Microscopia Crioeletrônica , Lipoproteínas HDL/química , Modelos Moleculares , Conformação Proteica
12.
Biochemistry ; 55(41): 5845-5853, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27662183

RESUMO

Injection of streptococcal serum opacity factor (SOF) into mice reduces the plasma cholesterol level by ∼40%. In vitro, SOF converts high-density lipoproteins (HDLs) into multiple products, including a small HDL, neo HDL. In vitro, neo HDL accounts for ∼60% of the protein mass of the SOF reaction products; in vivo, the accumulated mass of neo HDL is <1% of that observed in vitro. To identify the underlying cause of this difference, we determined the fate of neo HDL in plasma in vitro and in vivo. Following incubation with HDL, neo HDL-PC rapidly transfers to HDL, giving a small remnant, which fuses with HDL. An increased level of SR-B1 expression in Huh7 hepatoma cells and a reduced level of LDLR expression in CHO cells had little effect on neo HDL-[3H]CE uptake. Thus, the dominant receptors for neo HDL uptake are not LDLR or SR-B1. The in vivo metabolic fates of neo HDL-[3H]CE and HDL-[3H]CE were different. Thirty minutes after the injection of neo HDL-[3H]CE and HDL-[3H]CE into mice, plasma [3H]CE counts were 40 and 53%, respectively, of injected counts, with 10 times more [3H]CE appearing in the livers of neo HDL-[3H]CE-injected than in those of HDL-[3H]CE-injected mice. These data support a model of neo HDL-[3H]CE clearance by two parallel pathways. At early post-neo HDL-[3H]CE injection times, some neo HDL is directly removed by the liver; the remainder transfers its PC to HDL, leaving a remnant that fuses with HDL, which is also hepatically removed more slowly. Given that SR-B1 and SOF both remove CE from HDL, this novel mechanism may also underlie the metabolism of remnants released by hepatocytes following selective SR-B1-mediated uptake of HDL-CE.


Assuntos
Lipoproteínas HDL/biossíntese , Fígado/metabolismo , Peptídeo Hidrolases/metabolismo , Streptococcus/metabolismo , Animais , Linhagem Celular , Cricetinae , Humanos , Lipoproteínas HDL/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
13.
Biochemistry ; 54(14): 2295-302, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25790332

RESUMO

The reaction of Streptococcal serum opacity factor (SOF) against plasma high-density lipoproteins (HDL) produces a large cholesteryl ester-rich microemulsion (CERM), a smaller neo HDL that is apolipoprotein (apo) AI-poor, and lipid-free apo AI. SOF is active versus both human and mouse plasma HDL. In vivo injection of SOF into mice reduces plasma cholesterol ∼40% in 3 h while forming the same products observed in vitro, but at different ratios. Previous studies supported the hypothesis that labile apo AI is required for the SOF reaction vs HDL. Here we further tested that hypothesis by studies of SOF against HDL from apo AI-null mice. When injected into apo AI-null mice, SOF reduced plasma cholesterol ∼35% in 3 h. The reaction of SOF vs apo AI-null HDL in vitro produced a CERM and neo HDL, but no lipid-free apo. Moreover, according to the rate of CERM formation, the extent and rate of the SOF reaction versus apo AI-null mouse HDL were less than that against wild-type (WT) mouse HDL. Chaotropic perturbation studies using guanidine hydrochloride showed that apo AI-null HDL was more stable than WT HDL. Human apo AI added to apo AI-null HDL was quantitatively incorporated, giving reconstituted HDL. Both SOF and guanidine hydrochloride displaced apo AI from the reconstituted HDL. These results support the conclusion that apo AI-null HDL is more stable than WT HDL because it lacks apo AI, a labile protein that is readily displaced by physicochemical and biochemical perturbations. Thus, apo AI-null HDL is less SOF-reactive than WT HDL. The properties of apo AI-null HDL can be partially restored to those of WT HDL by the spontaneous incorporation of human apo AI. It remains to be determined what other HDL functions are affected by apo AI deletion.


Assuntos
Apolipoproteína A-I/química , Lipoproteínas HDL/química , Peptídeo Hidrolases/química , Animais , Apolipoproteína A-I/genética , Guanidina/química , Humanos , Lipoproteínas HDL/sangue , Camundongos Knockout , Peptídeo Hidrolases/metabolismo
14.
Arterioscler Thromb Vasc Biol ; 33(7): 1714-21, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23640486

RESUMO

OBJECTIVE: HIV patients on antiretroviral therapy (HIV/ART) exhibit a unique atherogenic dyslipidemic profile with hypertriglyceridemia (HTG) and low plasma concentrations of high-density lipoprotein (HDL) cholesterol. In the Heart Positive Study of HIV/ART patients, a hypolipidemic therapy of fenofibrate, niacin, diet, and exercise reduced HTG and plasma non-HDL cholesterol concentrations and raised plasma HDL cholesterol and adiponectin concentrations. We tested the hypothesis that HIV/ART HDL have abnormal structures and properties and are dysfunctional. APPROACH AND RESULTS: Hypolipidemic therapy reduced the TG contents of low-density lipoprotein and HDL. At baseline, HIV/ART low-density lipoproteins were more triglyceride (TG)-rich and HDL were more TG- and cholesteryl ester-rich than the corresponding lipoproteins from normolipidemic (NL) subjects. Very-low-density lipoproteins, low-density lipoprotein, and HDL were larger than the corresponding lipoproteins from NL subjects; HIV/ART HDL were less stable than NL HDL. HDL-[(3)H]cholesteryl ester uptake by Huh7 hepatocytes was used to assess HDL functionality. HIV/ART plasma were found to contain significantly less competitive inhibition activity for hepatocyte HDL-cholesteryl ester uptake than NL plasma were found to contain (P<0.001). CONCLUSIONS: Compared with NL subjects, lipoproteins from HIV/ART patients are larger and more neutral lipid-rich, and their HDL are less stable and less receptor-competent. On the basis of this work and previous studies of lipase activity in HIV, we present a model in which plasma lipolytic activities or hepatic cholesteryl ester uptake are impaired in HIV/ART patients. These findings provide a rationale to determine whether the distinctive lipoprotein structure, properties, and function of HIV/ART HDL predict atherosclerosis as assessed by carotid artery intimal medial thickness.


Assuntos
Antirretrovirais/efeitos adversos , Infecções por HIV/tratamento farmacológico , Hiperlipidemias/induzido quimicamente , Lipoproteínas HDL/sangue , Biomarcadores/sangue , Linhagem Celular Tumoral , Ésteres do Colesterol/metabolismo , Terapia Combinada , Dieta , Exercício Físico , Ácidos Fíbricos/uso terapêutico , Infecções por HIV/sangue , Infecções por HIV/diagnóstico , Hepatócitos/metabolismo , Humanos , Hiperlipidemias/sangue , Hiperlipidemias/terapia , Hipolipemiantes/uso terapêutico , Lipoproteínas LDL/sangue , Lipoproteínas VLDL/sangue , Niacina/uso terapêutico , Estabilidade Proteica , Receptores de Lipoproteínas/metabolismo , Fatores de Tempo , Resultado do Tratamento , Triglicerídeos/sangue
15.
Biochemistry ; 52(25): 4324-30, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23721456

RESUMO

Reassembled high-density lipoproteins (rHDL) of various sizes and compositions containing apo A-I or apo A-II as their sole protein, dimyristoylphosphatidylcholine (DMPC), and various amounts of free cholesterol (FC) have been isolated and analyzed by differential scanning calorimetry (DSC) and by circular dichroism to determine their stability and the temperature dependence of their helical content. Our data show that the multiple rHDL species obtained at each FC mole percent usually do not have the same FC mole percent as the starting mixture and that the size of the multiple species increases in a quantized way with their respective FC mole percent. DSC studies reveal multiple phases or domains that can be classified as virtual DMPC, which contains a small amount of DMPC that slightly reduces the melting temperature (Tm), a boundary phase that is adjacent to the apo A-I or apo A-II that circumscribes the discoidal rHDL, and a mixed FC/DMPC phase that has a Tm that increases with FC mole percent. Only the large rHDL contain virtual DMPC, whereas all contain boundary phase and various amounts of the mixed FC/DMPC phase according to increasing size and FC mole percent. As reported by others, FC stabilizes the rHDL. For rHDL (apo A-II) compared to rHDL (apo A-I), this occurs in spite of the reduced number of helical regions that mediate binding to the DMPC surface. This effect is attributed to the very high lipophilicity of apo A-II and the reduction in the polarity of the interface between DMPC and the aqueous phase with an increasing FC mole percent, an effect that is expected to increase the strength of the hydrophobic associations with the nonpolar face of the amphipathic helices of apo A-II. These data are relevant to the differential effects of FC and apolipoprotein species on intracellular and plasma membrane nascent HDL assembly and subsequent remodeling by plasma proteins.


Assuntos
HDL-Colesterol/química , Dimiristoilfosfatidilcolina/química , Fosfolipídeos/química , Apolipoproteína A-I/química , Apolipoproteína A-II/química , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Humanos , Transição de Fase , Espectrofotometria Ultravioleta , Termodinâmica
16.
Biochemistry ; 51(43): 8627-35, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23025327

RESUMO

Apolipoprotein (apo) A-II, the second most abundant protein after apo A-I of human plasma high-density lipoproteins (HDL), is the most lipophilic of the exchangeable apolipoproteins. The rate of microsolubilization of dimyristoylphosphatidylcholine (DMPC) membranes by apo A-I to give rHDL increases as the level of membrane free cholesterol (FC) increases up to 20 mol % when the level of reaction decreases to nil. Given its greater lipophilicity, we tested the hypothesis that apo A-II and its reduced and carboxymethylated monomer (rcm apo A-II) would form rHDL at a membrane FC content of >20 mol %. According to turbidimetric titrations, the DMPC/apo A-II stoichiometry is 65/1 (moles to moles). At this stoichiometry, apo A-II forms rHDL from DMPC and FC. Contrary to our hypothesis, apo A-II, like apo A-I, reacts poorly with DMPC containing ≥20 mol % FC. The rate of formation of rHDL from rcm apo A-II and DMPC at all FC mole percentages is faster than that of apo A-II but nil at 20 mol % FC. In parallel reactions, monomeric and dimeric apo A-II form large FC-rich rHDL coexisting with smaller FC-poor rHDL; increasing the FC mole percentage increases the number and size of FC-rich rHDL. On the basis of the compositions of coexisting large and small rHDL, the free energy of transfer of FC from the smallest to the largest particle is approximately -1.2 kJ. On the basis of our data, we propose a model in which apo A-I and apo A-II bind to DMPC via surface defects that disappear at 20 mol % FC. These data suggest apo A-II-containing HDL formed intrahepatically are likely cholesterol-rich compared to the smaller intracellular lipid-poor apo A-I HDL.


Assuntos
Apolipoproteína A-II/metabolismo , Apolipoproteína A-I/metabolismo , Colesterol/metabolismo , Dimiristoilfosfatidilcolina/metabolismo , Lipoproteínas HDL/metabolismo , Humanos , Cinética , Lipossomos/metabolismo , Termodinâmica
17.
Arterioscler Thromb Vasc Biol ; 31(8): 1834-41, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21597008

RESUMO

OBJECTIVE: Recombinant streptococcal serum opacity factor (rSOF) mediates the in vitro disassembly of human plasma high-density lipoprotein (HDL) into lipid-free apolipoprotein (apo) A-I, a neo-HDL that is cholesterol poor, and a cholesteryl ester-rich microemulsion (CERM) containing apoE. Given the occurrence of apoE on the CERM, we tested the hypothesis that rSOF injection into mice would reduce total plasma cholesterol clearance via apoE-dependent hepatic low-density lipoprotein receptors (LDLR). METHODS AND RESULTS: rSOF (4 µg) injection into wild-type C57BL/6J mice formed neo-HDL, CERM, and lipid-free apoA-I, as observed in vitro, and reduced plasma total cholesterol (-43%, t(1/2)=44±18 minutes) whereas control saline injections had a negligible effect. Similar experiments with apoE(-/-) and LDLR(-/-) mice reduced plasma total cholesterol ≈0% and 20%, respectively. rSOF was potent; injection of 0.18 µg of rSOF produced 50% of maximum reduction of plasma cholesterol 3 hours postinjection, corresponding to a ≈0.5-mg human dose. Most cholesterol was cleared hepatically (>99%), with rSOF treatment increasing clearance by 65%. CONCLUSIONS: rSOF injection into mice formed a CERM that was cleared via hepatic LDLR that recognize apoE. This reaction could provide an alternative mechanism for reverse cholesterol transport.


Assuntos
Apolipoproteínas E/metabolismo , HDL-Colesterol/sangue , Peptídeo Hidrolases/administração & dosagem , Receptores de LDL/metabolismo , Animais , Apolipoproteína A-I/sangue , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Proteínas de Bactérias/administração & dosagem , Ésteres do Colesterol/sangue , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Taxa de Depuração Metabólica/efeitos dos fármacos , Taxa de Depuração Metabólica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de LDL/deficiência , Receptores de LDL/genética , Proteínas Recombinantes/administração & dosagem , Distribuição Tecidual
18.
Nat Rev Cardiol ; 18(10): 712-723, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33833449

RESUMO

Plasma HDL-cholesterol concentrations correlate negatively with the risk of atherosclerotic cardiovascular disease (ASCVD). According to a widely cited model, HDL elicits its atheroprotective effect through its role in reverse cholesterol transport, which comprises the efflux of cholesterol from macrophages to early forms of HDL, followed by the conversion of free cholesterol (FCh) contained in HDL into cholesteryl esters, which are hepatically extracted from the plasma by HDL receptors and transferred to the bile for intestinal excretion. Given that increasing plasma HDL-cholesterol levels by genetic approaches does not reduce the risk of ASCVD, the focus of research has shifted to HDL function, especially in the context of macrophage cholesterol efflux. In support of the reverse cholesterol transport model, several large studies have revealed an inverse correlation between macrophage cholesterol efflux to plasma HDL and ASCVD. However, other studies have cast doubt on the underlying reverse cholesterol transport mechanism: in mice and humans, the FCh contained in HDL is rapidly cleared from the plasma (within minutes), independently of esterification and HDL holoparticle uptake by the liver. Moreover, the reversibility of FCh transfer between macrophages and HDL has implicated the reverse process - that is, the transfer of FCh from HDL to macrophages - in the aetiology of increased ASCVD under conditions of very high plasma HDL-FCh concentrations.


Assuntos
Aterosclerose , Colesterol , Lipoproteínas HDL , Animais , Aterosclerose/epidemiologia , Transporte Biológico , Colesterol/metabolismo , Humanos , Lipoproteínas HDL/sangue , Camundongos , Medição de Risco
19.
Biochemistry ; 49(45): 9866-73, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20879789

RESUMO

Serum opacity factor (SOF), a virulence determinant of Streptococcus pyogenes, converts plasma high-density lipoproteins (HDL) to three distinct species: lipid-free apolipoprotein (apo) A-I, neo HDL, a small discoidal HDL-like particle, and a large cholesteryl ester-rich microemulsion (CERM) that contains the cholesterol esters (CE) of up to ∼400000 HDL particles and apo E as its major protein. Similar SOF reaction products are obtained with HDL, total plasma lipoproteins, and whole plasma. We hypothesized that hepatic uptake of CERM-CE via multiple apo E-dependent receptors would be faster than that of HDL-CE. We tested our hypothesis using human hepatoma cells and lipoprotein receptor-specific Chinese hamster ovary (CHO) cells. The uptake of [(3)H]CE by HepG2 and Huh7 cells from HDL after SOF treatment, which transfers >90% of HDL-CE to CERM, was 2.4 and 4.5 times faster, respectively, than from control HDL. CERM-[(3)H]CE uptake was inhibited by LDL and HDL, suggestive of uptake by both the LDL receptor (LDL-R) and scavenger receptor class B type I (SR-BI). Studies in CHO cells specifically expressing LDL-R and SR-BI confirmed CERM-[(3)H]CE uptake by both receptors. RAP and heparin inhibit CERM-[(3)H]CE but not HDL-[(3)H]CE uptake, thereby implicating LRP-1 and cell surface proteoglycans in this process. These data demonstrate that SOF treatment of HDL increases the rate of CE uptake via multiple hepatic apo E receptors. In so doing, SOF might increase the level of hepatic disposal of plasma cholesterol in a way that is therapeutically useful.


Assuntos
HDL-Colesterol/metabolismo , Hepatócitos/metabolismo , Peptídeo Hidrolases/farmacologia , Streptococcus pyogenes/metabolismo , Animais , Compostos de Boro/metabolismo , Células CHO/metabolismo , Técnicas de Cultura de Células , Ésteres do Colesterol/metabolismo , HDL-Colesterol/efeitos dos fármacos , Cricetinae , Cricetulus , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos , Cinética , Fígado/metabolismo , Microscopia Confocal , Streptococcus pyogenes/patogenicidade , Virulência
20.
Biochim Biophys Acta ; 1791(12): 1125-32, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19635584

RESUMO

Whereas hepatocytes secrete the major human plasma high density lipoproteins (HDL)-protein, apo A-I, as lipid-free and lipidated species, the biogenic itineraries of apo A-II and apo E are unknown. Human plasma and HepG2 cell-derived apo A-II and apo E occur as monomers, homodimers and heterodimers. Dimerization of apo A-II, which is more lipophilic than apo A-I, is catalyzed by lipid surfaces. Thus, we hypothesized that lipidation of intracellular and secreted apo A-II exceeds that of apo A-I, and once lipidated, apo A-II dimerizes. Fractionation of HepG2 cell lysate and media by size exclusion chromatography showed that intracellular apo A-II and apo E are fully lipidated and occur on nascent HDL and VLDL respectively, while only 45% of intracellular apo A-I is lipidated. Secreted apo A-II and apo E occur on small HDL and on LDL and large HDL respectively. HDL particles containing both apo A-II and apo A-I form only after secretion from both HepG2 and Huh7 hepatoma cells. Apo A-II dimerizes intracellularly while intracellular apo E is monomeric but after secretion associates with HDL and subsequently dimerizes. Thus, HDL apolipoproteins A-I, A-II and E have distinct intracellular and post-secretory pathways of hepatic lipidation and dimerization in the process of HDL formation. These early forms of HDL are expected to follow different apolipoprotein-specific pathways through plasma remodeling and reverse cholesterol transport.


Assuntos
Apolipoproteína A-II/metabolismo , Apolipoproteína A-I/metabolismo , Apolipoproteínas E/metabolismo , Carcinoma Hepatocelular/metabolismo , Espaço Intracelular/metabolismo , Lipoproteínas HDL/metabolismo , Neoplasias Hepáticas/metabolismo , Cromatografia em Gel , Células Hep G2 , Humanos , Modelos Biológicos , Ligação Proteica , Multimerização Proteica , Sefarose/análogos & derivados , Fatores de Tempo , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA