Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 629(8011): 355-362, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720042

RESUMO

The coupling of excitons in π-conjugated molecules to high-frequency vibrational modes, particularly carbon-carbon stretch modes (1,000-1,600 cm-1) has been thought to be unavoidable1,2. These high-frequency modes accelerate non-radiative losses and limit the performance of light-emitting diodes, fluorescent biomarkers and photovoltaic devices. Here, by combining broadband impulsive vibrational spectroscopy, first-principles modelling and synthetic chemistry, we explore exciton-vibration coupling in a range of π-conjugated molecules. We uncover two design rules that decouple excitons from high-frequency vibrations. First, when the exciton wavefunction has a substantial charge-transfer character with spatially disjoint electron and hole densities, we find that high-frequency modes can be localized to either the donor or acceptor moiety, so that they do not significantly perturb the exciton energy or its spatial distribution. Second, it is possible to select materials such that the participating molecular orbitals have a symmetry-imposed non-bonding character and are, thus, decoupled from the high-frequency vibrational modes that modulate the π-bond order. We exemplify both these design rules by creating a series of spin radical systems that have very efficient near-infrared emission (680-800 nm) from charge-transfer excitons. We show that these systems have substantial coupling to vibrational modes only below 250 cm-1, frequencies that are too low to allow fast non-radiative decay. This enables non-radiative decay rates to be suppressed by nearly two orders of magnitude in comparison to π-conjugated molecules with similar bandgaps. Our results show that losses due to coupling to high-frequency modes need not be a fundamental property of these systems.

2.
Nature ; 597(7878): 666-671, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34588666

RESUMO

The use of non-fullerene acceptors (NFAs) in organic solar cells has led to power conversion efficiencies as high as 18%1. However, organic solar cells are still less efficient than inorganic solar cells, which typically have power conversion efficiencies of more than 20%2. A key reason for this difference is that organic solar cells have low open-circuit voltages relative to their optical bandgaps3, owing to non-radiative recombination4. For organic solar cells to compete with inorganic solar cells in terms of efficiency, non-radiative loss pathways must be identified and suppressed. Here we show that in most organic solar cells that use NFAs, the majority of charge recombination under open-circuit conditions proceeds via the formation of non-emissive NFA triplet excitons; in the benchmark PM6:Y6 blend5, this fraction reaches 90%, reducing the open-circuit voltage by 60 mV. We prevent recombination via this non-radiative channel by engineering substantial hybridization between the NFA triplet excitons and the spin-triplet charge-transfer excitons. Modelling suggests that the rate of back charge transfer from spin-triplet charge-transfer excitons to molecular triplet excitons may be reduced by an order of magnitude, enabling re-dissociation of the spin-triplet charge-transfer exciton. We demonstrate NFA systems in which the formation of triplet excitons is suppressed. This work thus provides a design pathway for organic solar cells with power conversion efficiencies of 20% or more.

3.
Nat Mater ; 23(4): 519-526, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480865

RESUMO

Hyperfluorescence shows great promise for the next generation of commercially feasible blue organic light-emitting diodes, for which eliminating the Dexter transfer to terminal emitter triplet states is key to efficiency and stability. Current devices rely on high-gap matrices to prevent Dexter transfer, which unfortunately leads to overly complex devices from a fabrication standpoint. Here we introduce a molecular design where ultranarrowband blue emitters are covalently encapsulated by insulating alkylene straps. Organic light-emitting diodes with simple emissive layers consisting of pristine thermally activated delayed fluorescence hosts doped with encapsulated terminal emitters exhibit negligible external quantum efficiency drops compared with non-doped devices, enabling a maximum external quantum efficiency of 21.5%. To explain the high efficiency in the absence of high-gap matrices, we turn to transient absorption spectroscopy. It is directly observed that Dexter transfer from a pristine thermally activated delayed fluorescence sensitizer host can be substantially reduced by an encapsulated terminal emitter, opening the door to highly efficient 'matrix-free' blue hyperfluorescence.

4.
Nature ; 563(7732): 536-540, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30464267

RESUMO

Organic light-emitting diodes (OLEDs)1-5, quantum-dot-based LEDs6-10, perovskite-based LEDs11-13 and micro-LEDs14,15 have been championed to fabricate lightweight and flexible units for next-generation displays and active lighting. Although there are already some high-end commercial products based on OLEDs, costs must decrease whilst maintaining high operational efficiencies for the technology to realise wider impact.  Here we demonstrate efficient action of radical-based OLEDs16, whose emission originates from a spin doublet, rather than a singlet or triplet exciton. While the emission process is still spin-allowed in these OLEDs, the efficiency limitations imposed by triplet excitons are circumvented for doublets. Using a luminescent radical emitter, we demonstrate an OLED with maximum external quantum efficiency of 27 per cent at a wavelength of 710 nanometres-the highest reported value for deep-red and infrared LEDs. For a standard closed-shell organic semiconductor, holes and electrons occupy the highest occupied and lowest unoccupied molecular orbitals (HOMOs and LUMOs), respectively, and recombine to form singlet or triplet excitons. Radical emitters have a singly occupied molecular orbital (SOMO) in the ground state, giving an overall spin-1/2 doublet. If-as expected on energetic grounds-both electrons and holes occupy this SOMO level, recombination returns the system to the ground state, giving no light emission. However, in our very efficient OLEDs, we achieve selective hole injection into the HOMO and electron injection to the SOMO to form the fluorescent doublet excited state with near-unity internal quantum efficiency.

5.
Angew Chem Int Ed Engl ; : e202402052, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705856

RESUMO

Carbene-metal-amides (CMAs) are emerging delayed fluorescence materials for organic light-emitting diode (OLED) applications. CMAs possess fast, efficient emission owing to rapid forward and reverse intersystem crossing (ISC) rates. The resulting dynamic equilibrium between singlet and triplet spin manifolds distinguishes CMAs from most purely organic thermally activated delayed fluorescence emitters. However, direct experimental triplet characterization in CMAs is underutilized, limiting our detailed understanding of the ISC mechanism. In this work, we combine time-resolved spectroscopy with tuning of state energies through environmental polarity and metal substitution, focusing on the interplay between charge-transfer (3CT) and local exciton (3LE) triplets. Unlike previous photophysical work, we investigate evaporated host : guest films of CMAs and small-molecule hosts for increased device relevance. Transient absorption reveals an evolution in the triplet excited-state absorption (ESA) consistent with a change in orbital character between hosts with differing dielectric constants. Using quantum chemical calculations, we simulate ESAs of the lowest triplet states, highlighting the contribution of only 3CT and donor-moiety 3LE states to spectral features, with no strong evidence for a low-lying acceptor-centered 3LE. Thus, our work provides a blueprint for understanding the role of triplet excited states in CMAs which will enable further intelligent optimization of this promising class of materials.

6.
Nat Mater ; 21(10): 1150-1157, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35927434

RESUMO

Thermally activated delayed fluorescence enables organic semiconductors with charge transfer-type excitons to convert dark triplet states into bright singlets via reverse intersystem crossing. However, thus far, the contribution from the dielectric environment has received insufficient attention. Here we study the role of the dielectric environment in a range of thermally activated delayed fluorescence materials with varying changes in dipole moment upon optical excitation. In dipolar emitters, we observe how environmental reorganization after excitation triggers the full charge transfer exciton formation, minimizing the singlet-triplet energy gap, with the emergence of two (reactant-inactive) modes acting as a vibrational fingerprint of the charge transfer product. In contrast, the dielectric environment plays a smaller role in less dipolar materials. The analysis of energy-time trajectories and their free-energy functions reveals that the dielectric environment substantially reduces the activation energy for reverse intersystem crossing in dipolar thermally activated delayed fluorescence emitters, increasing the reverse intersystem crossing rate by three orders of magnitude versus the isolated molecule.


Assuntos
Semicondutores , Fluorescência
7.
Behav Brain Sci ; 45: e201, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36172779

RESUMO

We agree with Bruineberg and colleagues' main claims. However, we urge for a more forceful critique by focusing on the extended mind debate. We argue that even once the Pearl and Friston versions of the Markov blanket have been untangled, that neither is sufficient for tackling and resolving the question of demarcating the boundaries of the mind.

8.
Nat Mater ; 19(12): 1332-1338, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32541938

RESUMO

Charge-transfer (CT) complexes, formed by electron transfer from a donor to an acceptor, play a crucial role in organic semiconductors. Excited-state CT complexes, termed exciplexes, harness both singlet and triplet excitons for light emission, and are thus useful for organic light-emitting diodes (OLEDs). However, present exciplex emitters often suffer from low photoluminescence quantum efficiencies (PLQEs), due to limited control over the relative orientation, electronic coupling and non-radiative recombination channels of the donor and acceptor subunits. Here, we use a rigid linker to control the spacing and relative orientation of the donor and acceptor subunits, as demonstrated with a series of intramolecular exciplex emitters based on 10-phenyl-9,10-dihydroacridine and 2,4,6-triphenyl-1,3,5-triazine. Sky-blue OLEDs employing one of these emitters achieve an external quantum efficiency (EQE) of 27.4% at 67 cd m-2 with only minor efficiency roll-off (EQE = 24.4%) at a higher luminous intensity of 1,000 cd m-2. As a control experiment, devices using chemically and structurally related but less rigid emitters reach substantially lower EQEs. These design rules are transferrable to other donor/acceptor combinations, which will allow further tuning of emission colour and other key optoelectronic properties.

9.
Nano Lett ; 20(8): 5678-5685, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32574069

RESUMO

Using circularly polarized broadband transient absorption, time-resolved circular photoluminescence, and transient Faraday rotation spectroscopy, we report that spin-dependent interactions have a significant impact on exciton energies and spin depolarization times in layered Ruddlesden-Popper hybrid metal-halide perovskites. In BA2FAPb2I7, we report that room-temperature spin lifetimes are largest (3.2 ps) at a carrier density of ∼1017 cm-3 with increasing depolarization rates at higher exciton densities. This indicates that many-body interactions reduce spin-lifetimes and outcompete the effect of D'yakonov-Perel precessional relaxation that has been previously reported at lower carrier densities. We further observe a dynamic circular dichroism that arises from a photoinduced polarization in the exciton distribution between total angular momentum states. Our findings provide fundamental and application relevant insights into the spin-dependent exciton-exciton interactions in layered hybrid perovskites.

10.
Angew Chem Int Ed Engl ; 60(37): 20498-20503, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34319641

RESUMO

Efficient organic emitters in the deep-red region are rare due to the "energy gap law". Herein, multiple boron (B)- and nitrogen (N)-atoms embedded polycyclic heteroaromatics featuring hybridized π-bonding/ non-bonding molecular orbitals are constructed, providing a way to overcome the above luminescent boundary. The introduction of B-phenyl-B and N-phenyl-N structures enhances the electronic coupling of those para-positioned atoms, forming restricted π-bonds on the phenyl-core for delocalized excited states and thus a narrow energy gap. The mutually ortho-positioned B- and N-atoms also induce a multi-resonance effect on the peripheral skeleton for the non-bonding orbitals, creating shallow potential energy surfaces to eliminate the high-frequency vibrational quenching. The corresponding deep-red emitters with peaks at 662 and 692 nm exhibit narrow full-width at half-maximums of 38 nm, high radiative decay rates of ca. 108  s-1 , ≈100 % photo-luminescence quantum yields and record-high maximum external quantum efficiencies of ca. 28 % in a normal planar organic light-emitting diode structure, simultaneously.

11.
Br J Haematol ; 189(6): 1044-1049, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32330308

RESUMO

Although the pathophysiology underlying severe COVID19 remains poorly understood, accumulating data suggest that a lung-centric coagulopathy may play an important role. Elevated D-dimer levels which correlated inversely with overall survival were recently reported in Chinese cohort studies. Critically however, ethnicity has major effects on thrombotic risk, with a 3-4-fold lower risk in Chinese compared to Caucasians and a significantly higher risk in African-Americans. In this study, we investigated COVID19 coagulopathy in Caucasian patients. Our findings confirm that severe COVID19 infection is associated with a significant coagulopathy that correlates with disease severity. Importantly however, Caucasian COVID19 patients on low molecular weight heparin thromboprophylaxis rarely develop overt disseminated intravascular coagulation (DIC). In rare COVID19 cases where DIC does develop, it tends to be restricted to late-stage disease. Collectively, these data suggest that the diffuse bilateral pulmonary inflammation observed in COVID19 is associated with a novel pulmonary-specific vasculopathy termed pulmonary intravascular coagulopathy (PIC) as distinct to DIC. Given that thrombotic risk is significantly impacted by race, coupled with the accumulating evidence that coagulopathy is important in COVID19 pathogenesis, our findings raise the intriguing possibility that pulmonary vasculopathy may contribute to the unexplained differences that are beginning to emerge highlighting racial susceptibility to COVID19 mortality.


Assuntos
Betacoronavirus , Transtornos da Coagulação Sanguínea/etiologia , Infecções por Coronavirus/complicações , Pneumonia Viral/complicações , População Branca , Transtornos da Coagulação Sanguínea/etnologia , Transtornos da Coagulação Sanguínea/patologia , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/etnologia , Coagulação Intravascular Disseminada/prevenção & controle , Feminino , Heparina de Baixo Peso Molecular/uso terapêutico , Humanos , Pulmão/irrigação sanguínea , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia/sangue , Pneumonia/patologia , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/etnologia , SARS-CoV-2 , Trombose/prevenção & controle
12.
Nat Mater ; 18(9): 977-984, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31332338

RESUMO

With their unusual electronic structures, organic radical molecules display luminescence properties potentially relevant to lighting applications; yet, their luminescence quantum yield and stability lag behind those of other organic emitters. Here, we designed donor-acceptor neutral radicals based on an electron-poor perchlorotriphenylmethyl or tris(2,4,6-trichlorophenyl)methyl radical moiety combined with different electron-rich groups. Experimental and quantum-chemical studies demonstrate that the molecules do not follow the Aufbau principle: the singly occupied molecular orbital is found to lie below the highest (doubly) occupied molecular orbital. These donor-acceptor radicals have a strong emission yield (up to 54%) and high photostability, with estimated half-lives reaching up to several months under pulsed ultraviolet laser irradiation. Organic light-emitting diodes based on such a radical emitter show deep-red/near-infrared emission with a maximal external quantum efficiency of 5.3%. Our results provide a simple molecular-design strategy for stable, highly luminescent radicals with non-Aufbau electronic structures.

13.
Phys Chem Chem Phys ; 21(20): 10580-10586, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31074469

RESUMO

Employing the thiophene based quinone, benzo[1,2-b:4,5-b']dithiophene-4,8-dione, as the electron-accepting moiety alongside N-phenylcarbazole donors to produce a donor-π-acceptor-π-donor (D-π-A-π-D) molecule has yielded a new red emitter displaying delayed fluorescence. This new molecule shows strongly (over 100 nm) red-shifted emission when compared to an anthraquinone based analogue. Cyclic voltammetry complemented by computational insights prove that this red-shift is due to the significantly stronger electron-accepting ability of the thiophene quinone compared to anthraquinone. Photophysical and computational studies of this molecule have revealed that while the presence of the thiophene containing acceptor facilitates rapid intersystem crossing which is comparable to anthraquinone analogues, the reverse intersystem crossing rate is slow and non-radiative decay is rapid which we can attribute to low-lying locally excited states. This limits the total photoluminescence quantum efficiency to less than 10% in both solution and the solid state. These results provide a useful example of how very minor structural variations can have a defining impact on the photophysical properties of new molecular materials.

15.
J Am Chem Soc ; 139(51): 18632-18639, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29155583

RESUMO

We investigate the origin of the broadband visible emission in layered hybrid lead-halide perovskites and its connection with structural and photophysical properties. We study ⟨001⟩ oriented thin films of hexylammonium (HA) lead iodide, (C6H16N)2PbI4, and dodecylammonium (DA) lead iodide, (C12H28N)2PbI4, by combining first-principles simulations with time-resolved photoluminescence, steady-state absorption and X-ray diffraction measurements on cooling from 300 to 4 K. Ultrafast transient absorption and photoluminescence measurements are used to track the formation and recombination of emissive states. In addition to the excitonic photoluminescence near the absorption edge, we find a red-shifted, broadband (full-width at half-maximum of about 0.4 eV), emission band below 200 K, similar to emission from ⟨110⟩ oriented bromide 2D perovskites at room temperature. The lifetime of this sub-band-gap emission exceeds that of the excitonic transition by orders of magnitude. We use X-ray diffraction measurements to study the changes in crystal lattice with temperature. We report changes in the octahedral tilt and lattice spacing in both materials, together with a phase change around 200 K in DA2PbI4. DFT simulations of the HA2PbI4 crystal structure indicate that the low-energy emission is due to interstitial iodide and related Frenkel defects. Our results demonstrate that white-light emission is not limited to ⟨110⟩ oriented bromide 2D perovskites but a general property of this class of system, and highlight the importance of defect control for the formation of low-energy emissive sites, which can provide a pathway to design tailored white-light emitters.

18.
Adv Mater ; : e2313602, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598847

RESUMO

Organic luminescent materials that exhibit thermally activated delayed fluorescence (TADF) can convert non-emissive triplet excitons into emissive singlet states through a reverse intersystem crossing (RISC) process. Therefore, they have tremendous potential for applications in organic light-emitting diodes (OLEDs). However, with the development of ultra-high definition 4K/8K display technologies, designing efficient deep-blue TADF materials to achieve the Commission Internationale de l'Éclairage (CIE) coordinates fulfilling BT.2020 remains a significant challenge. Here, an effective approach is proposed to design deep-blue TADF molecules based on hybrid long- and short-range charge-transfer by incorporation of multiple donor moieties into organoboron multiple resonance acceptors. The resulting TADF molecule exhibits deep-blue emission at 414 nm with a full width at half maximum (FWHM) of 29 nm, together with a thousand-fold increase in RISC rate. OLEDs based on the champion material achieve a record maximum external quantum efficiency (EQE) of 22.8% with CIE coordinates of (0.163, 0.046), approaching the coordinates of the BT.2020 blue standard. Moreover, TADF-assisted fluorescence devices employing the designed material as a sensitizer exhibit an exceptional EQE of 33.1%. This work thus provides a blueprint for future development of efficient deep-blue TADF emitters, representing an important milestone towards meeting the blue color gamut standard of BT.2020.

19.
Top Cogn Sci ; 15(4): 693-697, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165535

RESUMO

Kemmerer's discussion of links between semantic typology and embodied cognition is welcome, especially his survey of available evidence. Focusing on mechanisms of embodied enculturation, however, we must understand that language is just one part of developmental assemblies that shape cognition, alongside other cultural elements such as sensory learning, behavior patterns, social interactions, and emotional experience. We believe that a source of this problem is an obsolete definition of "culture" as shared mental information that is inconsistent with models of embodied cognition and yet pervasive in human and cognitive sciences. We point to microethnographies of cognitive ecologies as a tractable remedy.


Assuntos
Comparação Transcultural , Linguística , Humanos , Cognição , Aprendizagem , Idioma
20.
Top Cogn Sci ; 14(2): 363-387, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35220690

RESUMO

We propose an account of cognitive tools that takes into account the process of enculturation by which tools are integrated into our cognitive systems. Drawing on work in cultural evolution and developmental psychology, we argue that cognitive tools are complex entities consisting of physical objects, representational systems, and cognitive practices for the physical manipulation of the tool. We use an extensive case study of spatial navigation to demonstrate the core claims. The account we provide is contrasted with conceptions of cognitive tools that simplify cognition, in particular that they offload cognitive work, or that the tools themselves are temporary developmental scaffolds or props. Enculturation results in transformed cognitive systems, and we can now think and act in new ways with cognitive tools.


Assuntos
Cognição , Evolução Cultural , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA