Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nature ; 615(7953): 705-711, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922598

RESUMO

Artificial sweeteners are used as calorie-free sugar substitutes in many food products and their consumption has increased substantially over the past years1. Although generally regarded as safe, some concerns have been raised about the long-term safety of the consumption of certain sweeteners2-5. In this study, we show that the intake of high doses of sucralose in mice results in immunomodulatory effects by limiting T cell proliferation and T cell differentiation. Mechanistically, sucralose affects the membrane order of T cells, accompanied by a reduced efficiency of T cell receptor signalling and intracellular calcium mobilization. Mice given sucralose show decreased CD8+ T cell antigen-specific responses in subcutaneous cancer models and bacterial infection models, and reduced T cell function in models of T cell-mediated autoimmunity. Overall, these findings suggest that a high intake of sucralose can dampen T cell-mediated responses, an effect that could be used in therapy to mitigate T cell-dependent autoimmune disorders.


Assuntos
Sacarose , Edulcorantes , Linfócitos T , Animais , Camundongos , Sacarose/análogos & derivados , Edulcorantes/administração & dosagem , Edulcorantes/efeitos adversos , Edulcorantes/farmacologia , Edulcorantes/uso terapêutico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/patologia , Inocuidade dos Alimentos , Sinalização do Cálcio/efeitos dos fármacos , Receptores de Antígenos de Linfócitos T/efeitos dos fármacos , Receptores de Antígenos de Linfócitos T/imunologia , Infecções Bacterianas/imunologia , Neoplasias/imunologia , Autoimunidade/efeitos dos fármacos , Autoimunidade/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia
2.
Anal Chem ; 95(49): 18287-18294, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38044628

RESUMO

Bacterial biofilms are structured communities consisting of cells enmeshed in a self-generated extracellular matrix usually attached to a surface. They contain diverse classes of molecules including polysaccharides, lipids, proteins, nucleic acids, and diverse small organic molecules (primary and secondary metabolites) which are organized to optimize survival and facilitate dispersal to new colonization sites. In situ characterization of the chemical composition and structure of bacterial biofilms is necessary to fully understand their development on surfaces relevant to biofouling in health, industry, and the environment. Biofilm development has been extensively studied using confocal microscopy using targeted fluorescent labels providing important insights into the architecture of biofilms. Recently, cryopreparation has been used to undertake targeted in situ chemical characterization using Orbitrap secondary ion mass spectrometry (OrbiSIMS), providing a label-free method for imaging biofilms in their native state. Although the high mass resolution of OrbiSIMS enables more confident peak assignments, it is still very challenging to assign most of the peaks in the spectra due to complexity of SIMS spectra and lack of automatic peak assignment methods. Here, we analyze the same OrbiSIMS depth profile data generated from the frozen-hydrated biofilm, but employ a new untargeted chemical filtering process utilizing mass spectral databases to assign secondary ions to decipher the large number of fragments present in the SIMS spectra. To move towards comprehensive analysis of different chemistries in the sample, we apply a molecular formula prediction approach which putatively assigns 81% of peaks in the 3D OrbiSIMS depth profile analysis. This enables us to catalog over 1000 lipids and their fragments, 3500 protein fragments, 71 quorum sensing-related molecules (2-alkyl-4-quinolones and N-acylhomoserine lactones), 150 polysaccharide fragments, and glycolipids simultaneously from one data set and map these separated molecular classes spatially through a Pseudomonas aeruginosa biofilm. Assignment of different chemistries in this sample facilitates identification of differences between biofilms grown on biofilm-promoting and biofilm-resistant polymers.


Assuntos
Biofilmes , Pseudomonas aeruginosa , Pseudomonas aeruginosa/química , Percepção de Quorum , Espectrometria de Massa de Íon Secundário/métodos , Glicolipídeos
3.
Anal Chem ; 95(40): 15078-15085, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37715701

RESUMO

Quantitative analysis of binary mixtures of tris(2-phenylpyridinato)iridium(III) (Ir(ppy)3) and tris(8-hydroxyquinolinato)aluminum (Alq3) by using an artificial neural network (ANN) system to mass spectra was attempted based on the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study (TW2 A31) to evaluate matrix-effect correction and to investigate interface determination. Monolayers of binary mixtures having different Ir(ppy)3 ratios (0, 0.25, 0.50, 0.75, and 1.00), and the multilayers containing these mixtures and pure samples were measured using time-of-flight secondary ion mass spectrometry (ToF-SIMS) with different primary ion beams, OrbiSIMS (SIMS with both Orbitrap and ToF mass spectrometers), laser desorption ionization (LDI), desorption/ionization induced by neutral clusters (DINeC), and X-ray photoelectron spectroscopy (XPS). The mass spectra were analyzed using a simple ANN with one hidden layer. The Ir(ppy)3 ratios of the unknown samples and the interfaces of the multilayers were predicted using the simple ANN system, even though the mass spectra of binary mixtures exhibited matrix effects. The Ir(ppy)3 ratios at the interfaces indicated by the simple ANN were consistent with the XPS results and the ToF-SIMS depth profiles. The simple ANN system not only provided quantitative information on unknown samples, but also indicated important mass peaks related to each molecule in the samples without a priori information. The important mass peaks indicated by the simple ANN depended on the ionization process. The simple ANN results of the spectra sets obtained by a softer ionization method, such as LDI and DINeC, suggested large ions such as trimers. From the first step of the investigation to build an ANN model for evaluating mixture samples influenced by matrix effects, it was indicated that the simple ANN method is useful for obtaining candidate mass peaks for identification and for assuming mixture conditions that are helpful for further analysis.

4.
Nature ; 540(7634): 574-578, 2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-27974806

RESUMO

The pressing global issue of food insecurity due to population growth, diminishing land and variable climate can only be addressed in agriculture by improving both maximum crop yield potential and resilience. Genetic modification is one potential solution, but has yet to achieve worldwide acceptance, particularly for crops such as wheat. Trehalose-6-phosphate (T6P), a central sugar signal in plants, regulates sucrose use and allocation, underpinning crop growth and development. Here we show that application of a chemical intervention strategy directly modulates T6P levels in planta. Plant-permeable analogues of T6P were designed and constructed based on a 'signalling-precursor' concept for permeability, ready uptake and sunlight-triggered release of T6P in planta. We show that chemical intervention in a potent sugar signal increases grain yield, whereas application to vegetative tissue improves recovery and resurrection from drought. This technology offers a means to combine increases in yield with crop stress resilience. Given the generality of the T6P pathway in plants and other small-molecule signals in biology, these studies suggest that suitable synthetic exogenous small-molecule signal precursors can be used to directly enhance plant performance and perhaps other organism function.

5.
Anal Chem ; 93(7): 3436-3444, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33571411

RESUMO

We introduce a technique for the directed transfer of molecules from an adjacent reservoir onto a sample surface inside the vacuum chamber of a ToF-SIMS instrument using gas cluster ion beam (GCIB) sputtering. An example application for in situ matrix-enhanced secondary ion mass spectrometry (ME SIMS) is provided. This protocol has attractive features since most modern SIMS instruments are equipped with a GCIB gun. No solvents are required that would delocalize analytes at the surface, and the transfer of matrix molecules can be interlaced with SIMS depth profiling and 3D imaging sputtering and analysis cycles, which is not possible with conventional ME SIMS strategies. The amount of molecular deposition can be finely tuned, which is important for such a surface sensitive technique as SIMS. To demonstrate the concept, we used 2,5-DHB as a matrix for the enhancement of three drug molecules embedded in a tissue homogenate. By automatic operation of sputter deposition and erosion (cleanup) cycles, depth profiling could be achieved with ME SIMS with good repeatability (<4% RSD). Furthermore, we explored several different matrix compounds, including α-CHCA and aqueous solutions of Brønsted acids (formic acid) and 3-nitrobenzonitrile, a volatile compound known to spontaneously produce ions. The latter two matrix compounds were applied at cryogenic measurement conditions, which extend the range of matrices applicable for ME SIMS. Enhancement ratios range from 2 to 13, depending on the analytes and matrix. The method works in principle, but enhancement ratios for the drug molecules are rather limited at this point. Further study and optimization is needed, and the technique introduced here provides a tool to perform systematic studies of matrix compounds and experimental conditions for their potential for signal enhancement in ME SIMS.

6.
Anal Chem ; 93(9): 4191-4197, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33635050

RESUMO

We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the identification of peptide sample TOF-SIMS spectra by machine learning. More than 1000 time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra of six peptide model samples (one of them was a test sample) were collected using 27 TOF-SIMS instruments from 25 institutes of six countries, the U. S., the U. K., Germany, China, South Korea, and Japan. Because peptides have systematic and simple chemical structures, they were selected as model samples. The intensity of peaks in every TOF-SIMS spectrum was extracted using the same peak list and normalized to the total ion count. The spectra of the test peptide sample were predicted by Random Forest with 20 amino acid labels. The accuracy of the prediction for the test spectra was 0.88. Although the prediction of an unknown peptide was not perfect, it was shown that all of the amino acids in an unknown peptide can be determined by Random Forest prediction and the TOF-SIMS spectra. Moreover, the prediction of peptides, which are included in the training spectra, was almost perfect. Random Forest also suggests specific fragment ions from an amino acid residue Q, whose fragment ions detected by TOF-SIMS have not been reported, in the important features. This study indicated that the analysis using Random Forest, which enables translation of the mathematical relationships to chemical relationships, and the multi labels representing monomer chemical structures, is useful to predict the TOF-SIMS spectra of an unknown peptide.

7.
Analyst ; 146(10): 3378-3390, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33876155

RESUMO

Controlled-release formulations, in the form of micro- or nanoparticles, are increasingly attractive to the pharmaceutical industry for drug delivery. For respiratory illnesses, controlled-release microparticle formulations provide an opportunity to deliver a higher percentage of an inhaled medicament dose to the lung, thus potentially reducing the therapeutic dose, frequency of dosing, and minimising side-effects. We describe the use of a multimodal approach consisting of MALDI MS imaging, 3D depth profiling TOF-SIMS analysis, and histopathology to monitor the distribution of drug and excipients in sections taken from excised rat lungs following an inhaled administration of drug-laden microparticles. Following a single dose, the administered drug was detected in the lung via both MALDI MS and TOF-SIMS over a range of time points. Both imaging techniques enabled the characterisation of the distribution and retention of drug particles and identified differences in the capabilities of both imaging modalities. Histochemical staining of consecutive sections was used to provide biological context to the findings and will also be discussed in this presentation. We demonstrate how this multimodal approach could be used to help increase our understanding of the use of controlled release microparticles.


Assuntos
Excipientes , Pulmão , Animais , Preparações de Ação Retardada , Pulmão/diagnóstico por imagem , Imagem Multimodal , Tamanho da Partícula , Ratos
8.
Anal Chem ; 92(16): 10979-10988, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32627536

RESUMO

Chemical imaging techniques are increasingly being used in combination to achieve a greater understanding of a sample. This is especially true in the case of mass spectrometry imaging (MSI), where the use of different ionization sources allows detection of different classes of molecules across a range of spatial resolutions. There has been significant recent effort in the development of data fusion algorithms that attempt to combine the benefits of multiple techniques, such that the output provides additional information that would have not been present or obvious from the individual techniques alone. However, the majority of the data fusion methods currently in use rely on image registration to generate the fused data and therefore can suffer from artifacts caused by interpolation. Here, we present a method for data fusion that does not incorporate interpolation-based artifacts into the final fused data, applied to data acquired from multiple chemical imaging modalities. The method is evaluated using simulated data and a model polymer blend sample, before being applied to biological samples of mouse brain and lung.

9.
Anal Chem ; 92(13): 9008-9015, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32460495

RESUMO

Secondary ion mass spectrometry (SIMS) is gaining popularity for molecular imaging in the life sciences because it is label-free and allows imaging in two and three dimensions. The recent introduction of the OrbiSIMS has significantly improved the utility for biological imaging through combining subcellular spatial resolution with high-performance Orbitrap mass spectrometry. SIMS instruments operate in high-vacuum, and samples are typically analyzed in a freeze-dried state. Consequently, the molecular and structural information may not be well-preserved. We report a method for molecular imaging of biological materials, preserved in a native state, by using an OrbiSIMS instrument equipped with cryogenic sample handling and a high-pressure freezing protocol compatible with mass spectrometry. The performance is demonstrated by imaging a challenging sample (>90% water) of a mature Pseudomonas aeruginosa biofilm in its native state. The 3D distribution of quorum sensing signaling molecules, nucleobases, and bacterial membrane molecules is revealed with high spatial-resolution and high mass-resolution. We discover that analysis in the frozen-hydrated state yields a 10 000-fold increase in signal intensity for polar molecules such as amino acids, which has important implications for SIMS imaging of metabolites and pharmaceuticals.


Assuntos
Biofilmes , Pseudomonas aeruginosa/fisiologia , Espectrometria de Massa de Íon Secundário/métodos , Adenina/química , Congelamento , Imageamento Tridimensional , Microscopia Confocal , Percepção de Quorum
10.
Nat Methods ; 14(12): 1175-1183, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29131162

RESUMO

We report the development of a 3D OrbiSIMS instrument for label-free biomedical imaging. It combines the high spatial resolution of secondary ion mass spectrometry (SIMS; under 200 nm for inorganic species and under 2 µm for biomolecules) with the high mass-resolving power of an Orbitrap (>240,000 at m/z 200). This allows exogenous and endogenous metabolites to be visualized in 3D with subcellular resolution. We imaged the distribution of neurotransmitters-gamma-aminobutyric acid, dopamine and serotonin-with high spectroscopic confidence in the mouse hippocampus. We also putatively annotated and mapped the subcellular localization of 29 sulfoglycosphingolipids and 45 glycerophospholipids, and we confirmed lipid identities with tandem mass spectrometry. We demonstrated single-cell metabolomic profiling using rat alveolar macrophage cells incubated with different concentrations of the drug amiodarone, and we observed that the upregulation of phospholipid species and cholesterol is correlated with the accumulation of amiodarone.


Assuntos
Dopamina/análise , Hipocampo/metabolismo , Imagem Molecular/métodos , Serotonina/análise , Frações Subcelulares/metabolismo , Ácido gama-Aminobutírico/análise , Amiodarona/metabolismo , Animais , Células Cultivadas , Desenho de Equipamento , Feminino , Glicerofosfolipídeos/análise , Imageamento Tridimensional , Macrófagos Alveolares/metabolismo , Metabolômica/instrumentação , Metabolômica/métodos , Camundongos , Imagem Molecular/instrumentação , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sulfoglicoesfingolipídeos/análise , Espectrometria de Massas em Tandem
11.
Angew Chem Int Ed Engl ; 59(41): 18194-18200, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32603009

RESUMO

OrbiSIMS is a recently developed instrument for label-free imaging of chemicals with micron spatial resolution and high mass resolution. We report a cryogenic workflow for OrbiSIMS (Cryo-OrbiSIMS) that improves chemical detection of lipids and other biomolecules in tissues. Cryo-OrbiSIMS boosts ionization yield and decreases ion-beam induced fragmentation, greatly improving the detection of biomolecules such as triacylglycerides. It also increases chemical coverage to include molecules with intermediate or high vapor pressures, such as free fatty acids and semi-volatile organic compounds (SVOCs). We find that Cryo-OrbiSIMS reveals the hitherto unknown localization patterns of SVOCs with high spatial and chemical resolution in diverse plant, animal, and human tissues. We also show that Cryo-OrbiSIMS can be combined with genetic analysis to identify enzymes regulating SVOC metabolism. Cryo-OrbiSIMS is applicable to high resolution imaging of a wide variety of non-volatile and semi-volatile molecules across many areas of biomedicine.


Assuntos
Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Temperatura Baixa , História do Século XV
12.
Anal Chem ; 91(22): 14545-14551, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31621296

RESUMO

The protist (mostly single-celled organisms), Paramecium bursaria, forms an intracellular symbiotic relationship with the single-celled algae, Chlorella variabilis, where P. bursaria provides nutrients (i.e., Ca2+, Mg2+, and K+), carbon dioxide for photosynthesis and protection from viruses, while C. variabilis provides oxygen, carbon fixation, and nutrients. Key to this successful relationship is the perialgal vacuole (PV) membrane, which surrounds C. variabilis and protects it from digestion by P. bursaria. The membrane is fragile and difficult to analyze using conventional methods therefore very little is known about the molecular composition. We used the OrbiSIMS, a new high-resolution mass spectrometer with subcellular resolution imaging, to study the compartmentalization of endosymbionts and elucidate biomolecular interactions between the host and endosymbiont. Ions from the region of interest, close to C. variabilis, and specific to the target samples containing PVs were found based on the chemical mapping and masses of the ions. We show chemical localizations of oligosaccharides in close proximity of C. variabilis endosymbionts in P. bursaria. These oligosaccharides are detected in host-endosymbiont samples containing PV membrane-bound algae and absent in free-living algae and digestive vacuole (DV) membrane-bound algae in P. bursaria.


Assuntos
Chlorella/química , Membranas Intracelulares/química , Paramecium/química , Vacúolos/química , Espectrometria de Massas , Oligossacarídeos/análise , Simbiose/fisiologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-34877174

RESUMO

We report on a workshop held 1-3 May 2018 at the National Physical Laboratory, Teddington, U.K., in which the focus was how the world's national metrology institutes might help to address the challenges of reproducibility of research.The workshop brought together experts from the measurement and wider research communities in physical sciences, data analytics, life sciences, engineering, and geological science. The workshop involved 63 participants from metrology laboratories (38), academia (16), industry (5), funding agencies (2), and publishers (2). The participants came from the U.K., the United States, Korea, France, Germany, Australia, Bosnia and Herzegovina, Canada, Turkey, and Singapore.Topics explored how good measurement practice and principles could foster confidence in research findings and how to manage the challenges of increasing volume of data in both industry and research.

14.
Anal Chem ; 89(9): 4781-4785, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28394122

RESUMO

We present a novel in situ mask method for the preparation of cross-sections of organic materials such as polymer multilayer films suitable for chemical imaging of buried interfaces. We demonstrate this method on a model buried interface system consisting of a piece of Scotch tape adhered to a PET substrate and a protective film used in consumer packaging. A high dose of gallium from a focused ion beam (FIB) was used to produce a damaged overlayer on the surface of the organic sample. The damaged layer has a significantly slower sputter rate compared to the native undamaged organic material. Therefore, during gas cluster ion beam (GCIB) depth profiling experiments the damaged layer functions as a mask, protecting the sample beneath and producing a cross-section at the edge of the mask. The FIB itself cannot be used directly to prepare the cross-section since the organic materials are easily damaged. A four step workflow is described including a final cleaning procedure to remove redeposited material from the cross-section. The workflow is completed in a few hours for samples up to 100 µm thickness. The method does not require sample embedding and is suited to automated analysis, which can be important benefits for industrial analysis where a variety of samples are analyzed routinely.

15.
Anal Chem ; 89(22): 11944-11953, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29039651

RESUMO

ToF-SIMS is a label-free imaging method that has been shown to enable imaging of amiodarone in single rat macrophage (NR8383) cells. In this study, we show that the method extends to three other cell lines relevant to drug discovery: human embryonic kidney (HEK293), cervical cancer (HeLa), and liver cancer (HepG2). There is significant interest in the variation of drug uptake at the single cell level, and we use ToF-SIMS to show that there is great diversity between individual cells and when comparing each of the cell types. These single cell measurements are compared to quantitative measurements of cell-associated amiodarone for the population using LC/MS/MS and cell counting with flow cytometry. NR8383 and HepG2 cells uptake the greatest amount of amiodarone with an average of 2.38 and 2.60 pg per cell, respectively, and HeLa and Hek 293 have a significantly lower amount of amiodarone at 0.43 and 0.36 pg per cell, respectively. The amount of cell-associated drug for the ensemble population measurement (LC/MS/MS) is compared with the ToF-SIMS single cell data: a similar amount of drug was detected per cell for the NR8383, and HepG2 cells at a greater level than that for the HEK293 cells. However, the two techniques did not agree for the HeLa cells, and we postulate potential reasons for this.


Assuntos
Amiodarona/farmacocinética , Espectrometria de Massa de Íon Secundário , Amiodarona/análise , Animais , Linhagem Celular , Cromatografia Líquida , Citometria de Fluxo , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Ratos , Espectrometria de Massas em Tandem , Fatores de Tempo
16.
Anal Chem ; 88(9): 4808-16, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27014929

RESUMO

In this study, the impact of sprayer design and geometry on performance in desorption electrospray ionization mass spectrometry (DESI-MS) is assessed, as the sprayer is thought to be a major source of variability. Absolute intensity repeatability, spectral composition, and classification accuracy for biological tissues are considered. Marked differences in tissue analysis performance are seen between the commercially available and a lab-built sprayer. These are thought to be associated with the geometry of the solvent capillary and the resulting shape of the primary electrospray. Experiments with a sprayer with a fixed solvent capillary position show that capillary orientation has a crucial impact on tissue complex lipid signal and can lead to an almost complete loss of signal. Absolute intensity repeatability is compared for five lab-built sprayers using pork liver sections. Repeatability ranges from 1 to 224% for individual sprayers and peaks of different spectral abundance. Between sprayers, repeatability is 16%, 9%, 23%, and 34% for high, medium, low, and very low abundance peaks, respectively. To assess the impact of sprayer variability on tissue classification using multivariate statistical tools, nine human colorectal adenocarcinoma sections are analyzed with three lab-built sprayers, and classification accuracy for adenocarcinoma versus the surrounding stroma is assessed. It ranges from 80.7 to 94.5% between the three sprayers and is 86.5% overall. The presented results confirm that the sprayer setup needs to be closely controlled to obtain reliable data, and a new sprayer setup with a fixed solvent capillary geometry should be developed.


Assuntos
Adenocarcinoma/diagnóstico , Neoplasias Colorretais/diagnóstico , Lipídeos/análise , Fígado/química , Imagem Molecular , Espectrometria de Massas por Ionização por Electrospray , Animais , Humanos , Suínos
17.
Anal Chem ; 88(22): 11028-11036, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27726375

RESUMO

There is an increasing need in the pharmaceutical industry to reduce drug failure at late stage and thus reduce the cost of developing a new medicine. Since most drug targets are intracellular, this requires a better understanding of the drug disposition within a cell. Secondary ion mass spectrometry has been identified as a potentially important technique to do this, as it is label-free and allows imaging in 3D with subcellular resolution and recent studies have shown promise for amiodarone. An important analytical parameter is sensitivity, and we measure this in a bovine liver homogenate reference sample for 20 drugs representing important class types relevant to the pharmaceutical industry. We also measure the sensitivity for pure drug and show, for the first time, that the secondary ion mass spectrometry (SIMS) positive ionization efficiency for small molecules is a simple power-law relationship to the log P value. This discovery will be important for advancing the understanding of the SIMS ionization process in small molecules that has, until now, been elusive. This simple relationship is found to hold true for drug doped in the bovine liver homogenate reference sample, except for fluticasone, nicardipine, and sorafenib which suffer from severe matrix suppression. This relationship provides a simple semiempirical method to determine drug sensitivity for positive secondary ions. Furthermore, we show, on chosen models, how the use of different solvents during sample preparation can affect the ionization of analytes.


Assuntos
Fígado/química , Preparações Farmacêuticas/química , Espectrometria de Massa de Íon Secundário , Animais , Bovinos , Indústria Farmacêutica , Íons/química , Estrutura Molecular , Peso Molecular
18.
Anal Chem ; 87(13): 6696-702, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26023862

RESUMO

Detecting metabolites and parent compound within a cell type is now a priority for pharmaceutical development. In this context, three-dimensional secondary ion mass spectrometry (SIMS) imaging was used to investigate the cellular uptake of the antiarrhythmic agent amiodarone, a phospholipidosis-inducing pharmaceutical compound. The high lateral resolution and 3D imaging capabilities of SIMS combined with the multiplex capabilities of ToF mass spectrometric detection allows for the visualization of pharmaceutical compound and metabolites in single cells. The intact, unlabeled drug compound was successfully detected at therapeutic dosages in macrophages (cell line: NR8383). Chemical information from endogenous biomolecules was used to correlate drug distributions with morphological features. From this spatial analysis, amiodarone was detected throughout the cell, with the majority of the compound found in the membrane and subsurface regions and absent in the nuclear regions. Similar results were obtained when the macrophages were doped with amiodarone metabolite, desethylamiodarone. The fwhm lateral resolution measured across an intracellular interface in high lateral resolution ion images was approximately 550 nm. Overall, this approach provides the basis for studying cellular uptake of pharmaceutical compounds and their metabolites on the single cell level.


Assuntos
Espectrometria de Massas/métodos , Farmacocinética , Análise de Célula Única , Animais , Linhagem Celular Transformada , Ratos , Ratos Sprague-Dawley
19.
Anal Chem ; 86(18): 9264-70, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25137443

RESUMO

Many different types of samples have been analyzed in the literature using plasma-based ambient mass spectrometry sources; however, comprehensive studies of the important parameters for analysis are only just beginning. Here, we investigate the effect of the sample form and surface temperature on the signal intensities in plasma-assisted desorption ionization (PADI). The form of the sample is very important, with powders of all volatilities effectively analyzed. However, for the analysis of thin films at room temperature and using a low plasma power, a vapor pressure of greater than 10(-4) Pa is required to achieve a sufficiently good quality spectrum. Using thermal desorption, we are able to increase the signal intensity of less volatile materials with vapor pressures less than 10(-4) Pa, in thin film form, by between 4 and 7 orders of magnitude. This is achieved by increasing the temperature of the sample up to a maximum of 200 °C. Thermal desorption can also increase the signal intensity for the analysis of powders.


Assuntos
Espectrometria de Massas , Algoritmos , Hidroxitolueno Butilado/análogos & derivados , Hidroxitolueno Butilado/análise , Parabenos/análise , Fenilalanina/análise , Pós/química , Salicilatos/análise , Temperatura , Pressão de Vapor
20.
Anal Chem ; 86(19): 9603-11, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25208328

RESUMO

A VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study for desorption electrospray ionization mass spectrometry (DESI MS) measurements has been conducted with the involvement of 20 laboratories from 10 countries. Participants were provided with an analytical protocol and two reference samples: a thin layer of Rhodamine B and double-sided adhesive tape, each on separate glass slides. The studies comprised acquisition of positive ion mass spectra in predetermined m/z ranges. No sample preparation was required. Results for Rhodamine B show that very consistent craters may be generated. However, inadequacies of the spray and sample stage designs often lead to variable crater shapes. The average repeatability for Rhodamine B is 50%. Yet, repeatabilities better than 20% can be achieved. Rhodamine B proved to be an excellent reference sample to check the sample erosion crater, the sample stage movement and memory effects. Adhesive tape samples show that their average absolute intensity repeatability is 30% and the relative repeatability is 9%. The constancy of these spectra from relative intensities gives day-to-day average relative repeatabilities of 31%, three times worse than the short-term repeatability. Significant differences in the spectra from different laboratories arise from the different adventitious adducts observed or from contaminants that may cause the higher day-to-day variations. It is thought that this may be overcome by allowing some 20 ppb of sodium to be always present in the solvent, to be the dominating adduct. Repeatabilities better than 5% may be achieved with adequate control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA