Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biopharm Stat ; 32(6): 858-870, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35574690

RESUMO

There have been many strategies to adapt machine learning algorithms to account for right censored observations in survival data in order to build more accurate risk prediction models. These adaptions have included pre-processing steps such as pseudo-observation transformation of the survival outcome or inverse probability of censoring weighted (IPCW) bootstrapping of the observed binary indicator of an event prior to a time point of interest. These pre-processing steps allow existing or newly developed machine learning methods, which were not specifically developed with time-to-event data in mind, to be applied to right censored survival data for predicting the risk of experiencing an event. Stacking or ensemble methods can improve on risk predictions, but in general, the combination of pseudo-observation-based algorithms, IPCW bootstrapping, IPC weighting of the methods directly, and methods developed specifically for survival has not been considered in the same ensemble. In this paper, we propose an ensemble procedure based on the area under the pseudo-observation-based-time-dependent ROC curve to optimally stack predictions from any survival or survival adapted algorithm. The real application results show that our proposed method can improve on single survival based methods such as survival random forest or on other strategies that use a pre-processing step such as inverse probability of censoring weighted bagging or pseudo-observations alone.


Assuntos
Algoritmos , Algoritmo Florestas Aleatórias , Humanos , Área Sob a Curva , Probabilidade , Curva ROC , Análise de Sobrevida
2.
Int J Popul Data Sci ; 8(1): 2176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38414538

RESUMO

Introduction: Administrative health records (AHRs) are used to conduct population-based post-market drug safety and comparative effectiveness studies to inform healthcare decision making. However, the cost of data extraction, and the challenges associated with privacy and securing approvals can make it challenging for researchers to conduct methodological research in a timely manner using real data. Generating synthetic AHRs that reasonably represent the real-world data are beneficial for developing analytic methods and training analysts to rapidly implement study protocols. We generated synthetic AHRs using two methods and compared these synthetic AHRs to real-world AHRs. We described the challenges associated with using synthetic AHRs for real-world study. Methods: The real-world AHRs comprised prescription drug records for individuals with healthcare insurance coverage in the Population Research Data Repository (PRDR) from Manitoba, Canada for the 10-year period from 2008 to 2017. Synthetic data were generated using the Observational Medical Dataset Simulator II (OSIM2) and a modification (ModOSIM). Synthetic and real-world data were described using frequencies and percentages. Agreement of prescription drug use measures in PRDR, OSIM2 and ModOSIM was estimated with the concordance coefficient. Results: The PRDR cohort included 169,586,633 drug records and 1,395 drug types for 1,604,734 individuals. Synthetic data for 1,000,000 individuals were generated using OSIM2 and ModOSIM. Sex and age group distributions were similar in the real-world and synthetic AHRs. However, there were significant differences in the number of drug records and number of unique drugs per person for OSIM2 and ModOSIM when compared with PRDR. For the average number of days of drug use, concordance with the PRDR was 16% (95% confidence interval [CI]: 12%-19%) for OSIM2 and 88% (95% CI: 87%-90%) for ModOSIM. Conclusions: ModOSIM data were more similar to PRDR than OSIM2 data on many measures. Synthetic AHRs consistent with those found in real-world settings can be generated using ModOSIM. Synthetic data will benefit rapid implementation of methodological studies and data analyst training.


Assuntos
Medicamentos sob Prescrição , Humanos , Medicamentos sob Prescrição/efeitos adversos , Projetos de Pesquisa , Canadá , Cobertura do Seguro , Manitoba
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA