Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
N Engl J Med ; 390(8): 723-735, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38381675

RESUMO

BACKGROUND: Polycythemia vera is a chronic myeloproliferative neoplasm characterized by erythrocytosis. Rusfertide, an injectable peptide mimetic of the master iron regulatory hormone hepcidin, restricts the availability of iron for erythropoiesis. The safety and efficacy of rusfertide in patients with phlebotomy-dependent polycythemia vera are unknown. METHODS: In part 1 of the international, phase 2 REVIVE trial, we enrolled patients in a 28-week dose-finding assessment of rusfertide. Part 2 was a double-blind, randomized withdrawal period in which we assigned patients, in a 1:1 ratio, to receive rusfertide or placebo for 12 weeks. The primary efficacy end point was a response, defined by hematocrit control, absence of phlebotomy, and completion of the trial regimen during part 2. Patient-reported outcomes were assessed by means of the modified Myeloproliferative Neoplasm Symptom Assessment Form (MPN-SAF) patient diary (scores range from 0 to 10, with higher scores indicating greater severity of symptoms). RESULTS: Seventy patients were enrolled in part 1 of the trial, and 59 were assigned to receive rusfertide (30 patients) or placebo (29 patients) in part 2. The estimated mean (±SD) number of phlebotomies per year was 8.7±2.9 during the 28 weeks before the first dose of rusfertide and 0.6±1.0 during part 1 (estimated difference, 8.1 phlebotomies per year). The mean maximum hematocrit was 44.5±2.2% during part 1 as compared with 50.0±5.8% during the 28 weeks before the first dose of rusfertide. During part 2, a response was observed in 60% of the patients who received rusfertide as compared with 17% of those who received placebo (P = 0.002). Between baseline and the end of part 1, rusfertide treatment was associated with a decrease in individual symptom scores on the MPN-SAF in patients with moderate or severe symptoms at baseline. During parts 1 and 2, grade 3 adverse events occurred in 13% of the patients, and none of the patients had a grade 4 or 5 event. Injection-site reactions of grade 1 or 2 in severity were common. CONCLUSIONS: In patients with polycythemia vera, rusfertide treatment was associated with a mean hematocrit of less than 45% during the 28-week dose-finding period, and the percentage of patients with a response during the 12-week randomized withdrawal period was greater with rusfertide than with placebo. (Funded by Protagonist Therapeutics; REVIVE ClinicalTrials.gov number, NCT04057040.).


Assuntos
Hepcidinas , Peptídeos , Policitemia Vera , Humanos , Hematócrito , Hepcidinas/administração & dosagem , Hepcidinas/uso terapêutico , Ferro , Policitemia/diagnóstico , Policitemia/tratamento farmacológico , Policitemia/etiologia , Policitemia Vera/tratamento farmacológico , Policitemia Vera/complicações , Policitemia Vera/diagnóstico , Peptídeos/administração & dosagem , Peptídeos/uso terapêutico , Injeções , Método Duplo-Cego , Fármacos Hematológicos/administração & dosagem , Fármacos Hematológicos/uso terapêutico
2.
Blood ; 143(13): 1282-1292, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38232308

RESUMO

ABSTRACT: As a functional component of erythrocyte hemoglobin, iron is essential for oxygen delivery to all tissues in the body. The liver-derived peptide hepcidin is the master regulator of iron homeostasis. During anemia, the erythroid hormone erythroferrone regulates hepcidin synthesis to ensure the adequate supply of iron to the bone marrow for red blood cell production. However, mounting evidence suggested that another factor may exert a similar function. We identified the hepatokine fibrinogen-like 1 (FGL1) as a previously undescribed suppressor of hepcidin that is induced in the liver in response to hypoxia during the recovery from anemia, and in thalassemic mice. We demonstrated that FGL1 is a potent suppressor of hepcidin in vitro and in vivo. Deletion of Fgl1 in mice results in higher hepcidin levels at baseline and after bleeding. FGL1 exerts its activity by directly binding to bone morphogenetic protein 6 (BMP6), thereby inhibiting the canonical BMP-SMAD signaling cascade that controls hepcidin transcription.


Assuntos
Anemia , Hepcidinas , Camundongos , Animais , Hepcidinas/genética , Hepcidinas/metabolismo , Anemia/genética , Anemia/metabolismo , Ferro/metabolismo , Fígado/metabolismo , Proteína Morfogenética Óssea 6/genética , Proteína Morfogenética Óssea 6/metabolismo , Homeostase
3.
Blood ; 141(2): 194-199, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36315910

RESUMO

Sickle cell disease (SCD) is an inherited disorder resulting from a ß-globin gene mutation, and SCD patients experience erythrocyte sickling, vaso-occlusive episodes (VOE), and progressive organ damage. Chronic hemolysis, inflammation, and repeated red blood cell transfusions in SCD can disrupt iron homeostasis. Patients who receive multiple blood transfusions develop iron overload, and another subpopulation of SCD patients manifest iron deficiency. To elucidate connections between dietary iron, the microbiome, and SCD pathogenesis, we treated SCD mice with an iron-restricted diet (IRD). IRD treatment reduced iron availability and hemolysis, decreased acute VOE, and ameliorated chronic organ damage in SCD mice. Our results extend previous studies indicating that the gut microbiota regulate disease in SCD mice. IRD alters microbiota load and improves gut integrity, together preventing crosstalk between the gut microbiome and inflammatory factors such as aged neutrophils, dampening VOE, and organ damage. These findings provide strong evidence for the therapeutic potential of manipulating iron homeostasis and the gut microbiome to ameliorate SCD pathophysiology. Many treatments, which are under development, focus on lowering the systemic iron concentration to relieve disease complications, and our data suggest that iron-induced changes in microbiota load and gut integrity are related- and novel-therapeutic targets.


Assuntos
Anemia Falciforme , Doenças Vasculares , Camundongos , Animais , Ferro da Dieta , Ferro , Hemólise , Anemia Falciforme/complicações , Anemia Falciforme/terapia , Doenças Vasculares/etiologia , Doenças Vasculares/prevenção & controle
4.
Curr Opin Hematol ; 30(2): 45-52, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36728649

RESUMO

PURPOSE OF REVIEW: Development of hepcidin therapeutics has been a ground-breaking discovery in restoring iron homeostasis in several haematological disorders. The hepcidin mimetic, rusfertide, is in late-stage clinical development for treating polycythemia vera patients with a global phase 3 trial [NCT05210790] currently underway. Rusfertide serves as the first possible noncytoreductive therapeutic option to maintain haematocrit control and avoid phlebotomy in polycythemia vera patients. In this comprehensive review, we discuss the pathobiology of dysregulated iron metabolism in polycythemia vera, provide the rationale for targeting the hepcidin-ferroportin axis and elaborate on the preclinical and clinical trial evidence supporting the role of hepcidin mimetics in polycythemia vera. RECENT FINDINGS: Recently, updated results from two phase 2 clinical trials [NCT04057040 & NCT04767802] of rusfertide (PTG300) demonstrate that the drug is highly effective in eliminating the need for therapeutic phlebotomies, normalizing haematological parameters, repleting iron stores and relieving constitutional symptoms in patients with polycythemia vera. In light of these findings, additional hepcidin mimetic agents are also being evaluated in polycythemia vera patients. SUMMARY: Hepcidin agonists essentially serve as a 'chemical phlebotomy' and are poised to vastly improve the quality of life for phlebotomy requiring polycythemia vera patients.


Assuntos
Deficiências de Ferro , Policitemia Vera , Policitemia , Humanos , Policitemia Vera/diagnóstico , Policitemia/tratamento farmacológico , Policitemia/etiologia , Hepcidinas/metabolismo , Qualidade de Vida , Flebotomia/métodos , Ferro/metabolismo
5.
Br J Haematol ; 201(5): 982-994, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36872867

RESUMO

Beta-thalassaemia is an inherited haemoglobin disorder characterised by ineffective erythropoiesis (IE). The detailed pathogenesis of IE remains unclear. In this study, we used single-cell RNA sequencing (scRNA-seq) to examine IE in Th3/+ ß-thalassaemic mice. The results showed that the erythroid group was remarkably expanded, and genes involved in biological processes such as iron metabolism, haeme synthesis, protein folding, and response to heat were significantly upregulated from erythroid progenitors to reticulocytes in ß-thalassaemic mice. In particular, we identified a unique cell population close to reticulocytes, named ThReticulocytes, characterised by a high level of heat shock protein 70 (Hsp70) expression and dysregulation of iron metabolism and haeme synthesis signalling. Treatment of ß-thalassaemic mice with the haeme oxygenase inhibitor tin-mesoporphyrin effectively improved the iron disorder and IE, and the ThReticulocyte population and Hsp70 expression were significantly suppressed. This study revealed in detail the progression of IE at the single-cell level and possibly provided clues to find therapeutic targets in thalassaemia.


Assuntos
Talassemia , Talassemia beta , Camundongos , Animais , Talassemia beta/metabolismo , Eritropoese , Reticulócitos/metabolismo , Ferro/metabolismo
6.
Blood ; 137(9): 1145-1153, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33237986

RESUMO

Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are hematopoietic stem cell disorders that are defined by activating mutations in signal transduction pathways and are characterized clinically by the overproduction of platelets, red blood cells, and neutrophils, significant burden of disease-specific symptoms, and high rates of vascular events. The focus of this review is to critically reevaluate the clinical burden of thrombosis in MPNs, to review the clinical associations among clonal hematopoiesis, JAK2V617F burden, inflammation, and thrombosis, and to provide insights into novel primary and secondary thrombosis-prevention strategies.


Assuntos
Transtornos Mieloproliferativos/complicações , Trombose/etiologia , Animais , Hematopoiese Clonal , Humanos , Inflamação/etiologia , Inflamação/genética , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/genética , Trombose/genética
7.
Int J Cancer ; 151(9): 1555-1564, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35639027

RESUMO

Although many studies have shown that supplementation with iron and erythropoiesis-stimulating agents (ESA) is frequently used for managing chemotherapy-induced anemia (CIA), optimal combination therapy using these agents together to ameliorate anemia is not well characterized. To assess the effects of ESA combined with oral or intravenous (IV) iron on relieving CIA, PubMed, Cochrane Library, Embase and China National Knowledge Infrastructure (CNKI) were searched for articles. Data collected in the articles were meta-analyzed using RevMan 5.3 software with a random-effects model. Our comprehensive search yielded 1666 potentially relevant trials. A total of 41 trials randomizing 4200 patients with CIA fulfilled inclusion criteria, including 34 Chinese articles and 7 English articles. Meta-analysis showed that treatment with both ESA and iron more effectively improved CIA relative to iron supplementation alone, with increased hemoglobin, hematocrit, red blood cell count and hematopoietic response rate. Subgroup analyses revealed iron administration, both oral and IV iron, improved anemia in ESA-treated cancer patients with CIA. Our analysis demonstrates that iron supplementation combined with ESA more effectively ameliorates CIA relative to iron supplementation alone, without regard to whether IV or oral iron was used. Together, our findings may contribute to the clinical treatment of CIA using iron therapy with or without ESA.


Assuntos
Anemia , Antineoplásicos , Hematínicos , Neoplasias , Anemia/induzido quimicamente , Anemia/tratamento farmacológico , Antineoplásicos/farmacologia , Eritropoese , Hematínicos/uso terapêutico , Humanos , Ferro/uso terapêutico
8.
Blood ; 134(17): 1373-1384, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31434707

RESUMO

Transferrin, the major plasma iron-binding molecule, interacts with cell-surface receptors to deliver iron, modulates hepcidin expression, and regulates erythropoiesis. Transferrin binds and releases iron via either or both of 2 homologous lobes (N and C). To test the hypothesis that the specificity of iron occupancy in the N vs C lobe influences transferrin function, we generated mice with mutations to abrogate iron binding in either lobe (TfN-bl or TfC-bl). Mice homozygous for either mutation had hepatocellular iron loading and decreased liver hepcidin expression (relative to iron concentration), although to different magnitudes. Both mouse models demonstrated some aspects of iron-restricted erythropoiesis, including increased zinc protoporphyrin levels, decreased hemoglobin levels, and microcytosis. Moreover, the TfN-bl/N-bl mice demonstrated the anticipated effect of iron restriction on red cell production (ie, no increase in red blood cell [RBC] count despite elevated erythropoietin levels), along with a poor response to exogenous erythropoietin. In contrast, the TfC-bl/C-bl mice had elevated RBC counts and an exaggerated response to exogenous erythropoietin sufficient to ameliorate the anemia. Observations in heterozygous mice further support a role for relative N vs C lobe iron occupancy in transferrin-mediated regulation of iron homeostasis and erythropoiesis.


Assuntos
Eritropoese , Ferro/metabolismo , Transferrina/metabolismo , Animais , Sítios de Ligação , Contagem de Eritrócitos , Eritropoetina/metabolismo , Feminino , Homeostase , Masculino , Camundongos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transferrina/química , Transferrina/genética
9.
Br J Haematol ; 188(2): 321-331, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31418854

RESUMO

Hepcidin (HAMP) synthesis is suppressed by erythropoiesis to increase iron availability for red blood cell production. This effect is thought to result from factors secreted by erythroid precursors. Growth differentiation factor 11 (GDF11) expression was recently shown to increase in erythroid cells of ß-thalassaemia, and decrease with improvement in anaemia. Whether GDF11 regulates hepatic HAMP production has never been experimentally studied. Here, we explore GDF11 function during erythropoiesis-triggered HAMP suppression. Our results confirm that exogenous erythropoietin significantly increases Gdf11 as well as Erfe (erythroferrone) expression, and Gdf11 is also increased, albeit at a lower degree than Erfe, in phlebotomized wild type and ß-thalassaemic mice. GDF11 is expressed predominantly in erythroid burst forming unit- and erythroid colony-forming unit- cells during erythropoiesis. Exogeneous GDF11 administration results in HAMP suppression in vivo and in vitro. Furthermore, exogenous GDF11 decreases BMP-SMAD signalling, enhances SMAD ubiquitin regulatory factor 1 (SMURF1) expression and induces ERK1/2 (MAPK3/1) signalling. ERK1/2 signalling activation is required for GDF11 or SMURF1-mediated suppression in BMP-SMAD signalling and HAMP expression. This research newly characterizes GDF11 in erythropoiesis-mediated HAMP suppression, in addition to ERFE.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Fatores de Diferenciação de Crescimento/metabolismo , Hepcidinas/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/biossíntese , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/farmacologia , Eritropoese/fisiologia , Eritropoetina/farmacologia , Fatores de Diferenciação de Crescimento/biossíntese , Fatores de Diferenciação de Crescimento/genética , Fatores de Diferenciação de Crescimento/farmacologia , Células Hep G2 , Hepatócitos/metabolismo , Hepcidinas/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Hormônios Peptídicos/biossíntese , Hormônios Peptídicos/genética , Proteínas Recombinantes/farmacologia , Proteínas Smad/metabolismo
10.
Haematologica ; 105(7): 1835-1844, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31582543

RESUMO

Minihepcidins are hepcidin agonists that have been previously shown to reverse iron overload and improve erythropoiesis in mice affected by non-transfusion-dependent thalassemia. Given the extreme anemia that occurred with the previous model of transfusion-dependent thalassemia, that model was inadequate for investigating whether minihepcidins can improve red blood cell quality, lifespan and ineffective erythropoiesis. To overcome this limitation, we generated a new murine model of transfusion-dependent thalassemia with severe anemia and splenomegaly, but sufficient red cells and hemoglobin production to test the effect of minihepcidins. Furthermore, this new model demonstrates cardiac iron overload for the first time. In the absence of transfusions, minihepcidins improved red blood cell morphology and lifespan as well as ineffective erythropoiesis. Administration of a minihepcidin in combination with chronic red blood cell transfusion further improved the ineffective erythropoiesis and splenomegaly and reversed cardiac iron overload. These studies indicate that drugs such as minihepcidins have therapeutic potential for patients with transfusion-dependent thalassemia.


Assuntos
Hepcidinas/uso terapêutico , Sobrecarga de Ferro , Esplenomegalia , Talassemia beta , Animais , Modelos Animais de Doenças , Eritropoese , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/etiologia , Camundongos , Esplenomegalia/tratamento farmacológico , Esplenomegalia/etiologia , Talassemia beta/terapia
11.
Blood ; 130(10): 1243-1246, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28739636

RESUMO

Erythroferrone (ERFE) is a glycoprotein hormone secreted by erythroblasts in response to stimulation by erythropoietin (EPO). We previously demonstrated that ERFE messenger RNA expression and serum protein concentration increase in mice subjected to hemorrhage or EPO therapy, that ERFE acts on hepatocytes to suppress hepcidin, and that the resulting decrease in hepcidin augments iron delivery for intensified erythropoiesis. We also showed that ERFE contributes to pathological hepcidin suppression and iron overload in mice with nontransfused ß-thalassemia. We now report the development and technical validation of a rabbit monoclonal antibody-based sandwich immunoassay for human ERFE. We use this assay to show that blood loss or EPO administration increases serum ERFE concentrations in humans, and that patients with both nontransfused and transfused ß-thalassemia have very high serum ERFE levels, which decrease after blood transfusion. The assay should be useful for human studies of normal and disordered erythropoiesis and its effect on iron homeostasis.


Assuntos
Imunoensaio/métodos , Hormônios Peptídicos/sangue , Adulto , Idoso , Doadores de Sangue , Eritropoese , Hepcidinas/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Talassemia beta/sangue
12.
Blood ; 129(11): 1514-1526, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28151426

RESUMO

Iron availability for erythropoiesis and its dysregulation in ß-thalassemia are incompletely understood. We previously demonstrated that exogenous apotransferrin leads to more effective erythropoiesis, decreasing erythroferrone (ERFE) and derepressing hepcidin in ß-thalassemic mice. Transferrin-bound iron binding to transferrin receptor 1 (TfR1) is essential for cellular iron delivery during erythropoiesis. We hypothesize that apotransferrin's effect is mediated via decreased TfR1 expression and evaluate TfR1 expression in ß-thalassemic mice in vivo and in vitro with and without added apotransferrin. Our findings demonstrate that ß-thalassemic erythroid precursors overexpress TfR1, an effect that can be reversed by the administration of exogenous apotransferrin. In vitro experiments demonstrate that apotransferrin inhibits TfR1 expression independent of erythropoietin- and iron-related signaling, decreases TfR1 partitioning to reticulocytes during enucleation, and enhances enucleation of defective ß-thalassemic erythroid precursors. These findings strongly suggest that overexpressed TfR1 may play a regulatory role contributing to iron overload and anemia in ß-thalassemic mice. To evaluate further, we crossed TfR1+/- mice, themselves exhibiting iron-restricted erythropoiesis with increased hepcidin, with ß-thalassemic mice. Resultant double-heterozygote mice demonstrate long-term improvement in ineffective erythropoiesis, hepcidin derepression, and increased erythroid enucleation in relation to ß-thalassemic mice. Our data demonstrate for the first time that TfR1+/- haploinsufficiency reverses iron overload specifically in ß-thalassemic erythroid precursors. Taken together, decreasing TfR1 expression during ß-thalassemic erythropoiesis, either directly via induced haploinsufficiency or via exogenous apotransferrin, decreases ineffective erythropoiesis and provides an endogenous mechanism to upregulate hepcidin, leading to sustained iron-restricted erythropoiesis and preventing systemic iron overload in ß-thalassemic mice.


Assuntos
Anemia/etiologia , Hepcidinas/metabolismo , Receptores da Transferrina/metabolismo , Talassemia beta/metabolismo , Anemia/prevenção & controle , Animais , Apoproteínas/administração & dosagem , Apoproteínas/farmacocinética , Eritropoese , Sobrecarga de Ferro/etiologia , Camundongos , Transferrina/administração & dosagem , Transferrina/farmacocinética
13.
Transfusion ; 59(7): 2264-2275, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31002399

RESUMO

BACKGROUND: The chromium-51-labeled posttransfusion recovery (PTR) study has been the gold-standard test for assessing red blood cell (RBC) quality. Despite guiding RBC storage development for decades, it has several potential sources for error. METHODS: Four healthy adult volunteers each donated an autologous, leukoreduced RBC unit, aliquots were radiolabeled with technetium-99m after 1 and 6 weeks of storage, and then infused. Subjects were imaged by single-photon-emission computed tomography immediately and 4 hours after infusion. Additionally, from subjects described in a previously published study, adenosine triphosphate levels in transfusates infused into 52 healthy volunteers randomized to a single autologous, leukoreduced, RBC transfusion after 1, 2, 3, 4, 5, or 6 weeks of storage were correlated with PTR and laboratory parameters of hemolysis. RESULTS: Evidence from one subject imaged after infusion of technetium-99m-labeled RBCs suggests that, in some individuals, RBCs may be temporarily sequestered in the liver and spleen immediately following transfusion and then subsequently released back into circulation; this could be one source of error leading to PTR results that may not accurately predict the true quantity of RBCs cleared by intra- and/or extravascular hemolysis. Indeed, adenosine triphosphate levels in the transfusates correlated more robustly with measures of extravascular hemolysis in vivo (e.g., serum iron, indirect bilirubin, non-transferrin-bound iron) than with PTR results or measures of intravascular hemolysis (e.g., plasma free hemoglobin). CONCLUSIONS: Sources of measurement error are inherent in the chromium-51 PTR method. Transfusion of an entire unlabeled RBC unit, followed by quantifying extravascular hemolysis markers, may more accurately measure true posttransfusion RBC recovery.


Assuntos
Preservação de Sangue/métodos , Radioisótopos de Cromo , Transfusão de Eritrócitos , Eritrócitos/fisiologia , Trifosfato de Adenosina/sangue , Adulto , Armazenamento de Sangue/métodos , Transfusão de Sangue Autóloga , Feminino , Hemólise , Humanos , Fígado/fisiologia , Masculino , Pessoa de Meia-Idade , Baço/fisiologia , Tecnécio , Fatores de Tempo
14.
Ann Hematol ; 98(4): 841-849, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30783732

RESUMO

Inhaled mometasone was shown to improve pain scores and decrease soluble vascular cell adhesion molecule (sVCAM) concentration in a randomized controlled trial of nonasthmatic patients with sickle cell disease. We sought to explore potential changes in systemic inflammation as a mechanism underlying this effect. Serum samples from 41 trial participants (15 placebo- and 26 mometasone-treated) were analyzed using a 92 inflammatory marker panel at baseline and after 8 weeks of mometasone therapy. Individual marker analysis and correlation analysis were conducted. Adjusted for age, the mometasone-treated group decreased the concentration of CXCL9, CXCL11, CD40, IL-10, and IL-18 relative to placebo-treated participants. Hierarchical clustering and correlation analysis identified additional evidence for a decrease in cytokines linking to macrophage signaling and migration. There was no statistically significant change in markers of asthma and allergy, indicating that the improvement was unlikely mediated by modulation of occult reactive airway disease. This analysis of inflammatory markers suggests that decrease in macrophage activity may be involved in the mediation of the clinical benefit seen with use of inhaled mometasone in nonasthmatic patients with sickle cell disease.Trial registration: clinicaltrials.gov identifier: NCT02061202.


Assuntos
Anemia Falciforme/tratamento farmacológico , Macrófagos/metabolismo , Furoato de Mometasona/administração & dosagem , Dor/tratamento farmacológico , Administração por Inalação , Adulto , Anemia Falciforme/sangue , Asma/sangue , Biomarcadores/sangue , Antígenos CD40/sangue , Quimiocina CXCL11/sangue , Quimiocina CXCL9/sangue , Feminino , Humanos , Interleucina-10/sangue , Interleucina-18/sangue , Masculino , Pessoa de Meia-Idade , Dor/sangue
15.
J Cell Physiol ; 233(9): 7268-7278, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29600572

RESUMO

Hemochromatosis is prevalent and often associated with high rates of morbidity and mortality worldwide. The safe alternative iron-reducing approaches are urgently needed in order to better control iron overload. Our unbiased vitamin screen for modulators of hepcidin, a master iron regulatory hormone, identifies adenine (vitamin B4) as a potent hepcidin agonist. Adenine significantly induced hepcidin mRNA level and promoter activity activation in human cell lines, possibly through BMP/SMAD pathway. Further studies in mice validated the effect of adenine on hepcidin upregulation. Consistently, adenine dietary supplement in mice led to an increase of hepatic hepcidin expression compared with normal diet-fed mice via BMP/SMAD pathway. Notably, adenine-rich diet significantly ameliorated iron overload accompanied by the enhanced hepcidin expression in both high iron-fed mice and in Hfe-/- mice, a murine model of hereditary hemochromatosis. To further validate this finding, we selected pharmacological inhibitors against BMP (LDN193189). We found LDN193189 strongly blocked the hepcidin induction by adenine. Moreover, we uncovered an essential role of cAMP/PKA-dependent axis in triggering adenine-induced hepcidin expression in primary hepatocytes by using 8 br cAMP, a cAMP analog, and H89, a potent inhibitor for PKA signaling. These findings suggest a potential therapeutic role of adenine for hereditary hemochromatosis.


Assuntos
Adenina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Hepcidinas/metabolismo , Sobrecarga de Ferro/metabolismo , Fígado/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem Celular Tumoral , Dieta , Modelos Animais de Doenças , Proteína da Hemocromatose/deficiência , Proteína da Hemocromatose/metabolismo , Humanos , Ferro/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Transdução de Sinais , Proteínas Smad/metabolismo , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos , Vitaminas/metabolismo
16.
Blood ; 128(2): 265-76, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27154187

RESUMO

In ß-thalassemia and polycythemia vera (PV), disordered erythropoiesis triggers severe pathophysiological manifestations. ß-Thalassemia is characterized by ineffective erythropoiesis, reduced production of erythrocytes, anemia, and iron overload and PV by erythrocytosis and thrombosis. Minihepcidins are hepcidin agonists that have been previously shown to prevent iron overload in murine models of hemochromatosis and induce iron-restricted erythropoiesis at higher doses. Here, we show that in young Hbb(th3/+) mice, which serve as a model of untransfused ß-thalassemia, minihepcidin ameliorates ineffective erythropoiesis, anemia, and iron overload. In older mice with untransfused ß-thalassemia, minihepcidin improves erythropoiesis and does not alter the beneficial effect of the iron chelator deferiprone on iron overload. In PV mice that express the orthologous JAK2 mutation causing human PV, administration of minihepcidin significantly reduces splenomegaly and normalizes hematocrit levels. These studies indicate that drug-like minihepcidins have a potential as future therapeutics for untransfused ß-thalassemia and PV.


Assuntos
Eritropoese , Hepcidinas/farmacologia , Peptídeos/farmacologia , Policitemia Vera/metabolismo , Talassemia beta/metabolismo , Substituição de Aminoácidos , Animais , Hepcidinas/genética , Hepcidinas/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Camundongos , Camundongos Mutantes , Mutação de Sentido Incorreto , Peptídeos/genética , Peptídeos/metabolismo , Policitemia Vera/genética , Talassemia beta/genética
18.
J Am Soc Nephrol ; 28(12): 3605-3615, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28784700

RESUMO

Renal transplants remain a medical challenge, because the parameters governing allograft outcome are incompletely identified. Here, we investigated the role of serum iron in the sterile inflammation that follows kidney ischemia-reperfusion injury. In a retrospective cohort study of renal allograft recipients (n=169), increased baseline levels of serum ferritin reliably predicted a positive outcome for allografts, particularly in elderly patients. In mice, systemic iron overload protected against renal ischemia-reperfusion injury-associated sterile inflammation. Furthermore, chronic iron injection in mice prevented macrophage recruitment after inflammatory stimuli. Macrophages cultured in high-iron conditions had reduced responses to Toll-like receptor-2, -3, and -4 agonists, which associated with decreased reactive oxygen species production, increased nuclear localization of the NRF2 transcription factor, increased expression of the NRF2-related antioxidant response genes, and limited NF-κB and proinflammatory signaling. In macrophage-depleted animals, the infusion of macrophages cultured in high-iron conditions did not reconstitute AKI after ischemia-reperfusion, whereas macrophages cultured in physiologic iron conditions did. These findings identify serum iron as a critical protective factor in renal allograft outcome. Increasing serum iron levels in patients may thus improve prognosis of renal transplants.


Assuntos
Ferro/sangue , Rim/patologia , Traumatismo por Reperfusão/prevenção & controle , Adulto , Aloenxertos , Animais , Antioxidantes/metabolismo , Feminino , Ferritinas/sangue , Taxa de Filtração Glomerular , Humanos , Inflamação , Ferro/química , Rim/metabolismo , Transplante de Rim , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Monócitos/citologia , Fator 2 Relacionado a NF-E2/metabolismo , Peritonite/metabolismo , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
19.
Blood ; 124(6): 873-81, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24923296

RESUMO

Myelodysplastic syndromes (MDSs) are a group of heterogeneous clonal bone marrow disorders characterized by ineffective hematopoiesis, peripheral blood cytopenias, and potential for malignant transformation. Lower/intermediate-risk MDSs are associated with longer survival and high red blood cell (RBC) transfusion requirements resulting in secondary iron overload. Recent data suggest that markers of iron overload portend a relatively poor prognosis, and retrospective analysis demonstrates that iron chelation therapy is associated with prolonged survival in transfusion-dependent MDS patients. New data provide concrete evidence of iron's adverse effects on erythroid precursors in vitro and in vivo. Renewed interest in the iron field was heralded by the discovery of hepcidin, the main serum peptide hormone negative regulator of body iron. Evidence from ß-thalassemia suggests that regulation of hepcidin by erythropoiesis dominates regulation by iron. Because iron overload develops in some MDS patients who do not require RBC transfusions, the suppressive effect of ineffective erythropoiesis on hepcidin may also play a role in iron overload. We anticipate that additional novel tools for measuring iron overload and a molecular-mechanism-driven description of MDS subtypes will provide a deeper understanding of how iron metabolism and erythropoiesis intersect in MDSs and improve clinical management of this patient population.


Assuntos
Terapia por Quelação , Quelantes de Ferro/uso terapêutico , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/etiologia , Síndromes Mielodisplásicas/complicações , Síndromes Mielodisplásicas/terapia , Transfusão de Eritrócitos/efeitos adversos , Eritrócitos/metabolismo , Eritropoese , Hepcidinas/sangue , Humanos , Ferro/sangue , Ferro/metabolismo , Sobrecarga de Ferro/sangue , Modelos Biológicos , Síndromes Mielodisplásicas/sangue , Fatores de Risco
20.
Haematologica ; 101(3): 297-308, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26635037

RESUMO

Iron overload results in significant morbidity and mortality in ß-thalassemic patients. Insufficient hepcidin is implicated in parenchymal iron overload in ß-thalassemia and approaches to increase hepcidin have therapeutic potential. We have previously shown that exogenous apo-transferrin markedly ameliorates ineffective erythropoiesis and increases hepcidin expression in Hbb(th1/th1) (thalassemic) mice. We utilize in vivo and in vitro systems to investigate effects of exogenous apo-transferrin on Smad and ERK1/2 signaling, pathways that participate in hepcidin regulation. Our results demonstrate that apo-transferrin increases hepcidin expression in vivo despite decreased circulating and parenchymal iron concentrations and unchanged liver Bmp6 mRNA expression in thalassemic mice. Hepatocytes from apo-transferrin-treated mice demonstrate decreased ERK1/2 pathway and increased serum BMP2 concentration and hepatocyte BMP2 expression. Furthermore, hepatocyte ERK1/2 phosphorylation is enhanced by neutralizing anti-BMP2/4 antibodies and suppressed in vitro in a dose-dependent manner by BMP2, resulting in converse effects on hepcidin expression, and hepatocytes treated with MEK/ERK1/2 inhibitor U0126 in combination with BMP2 exhibit an additive increase in hepcidin expression. Lastly, bone marrow erythroferrone expression is normalized in apo-transferrin treated thalassemic mice but increased in apo-transferrin injected wild-type mice. These findings suggest that increased hepcidin expression after exogenous apo-transferrin is in part independent of erythroferrone and support a model in which apo-transferrin treatment in thalassemic mice increases BMP2 expression in the liver and other organs, decreases hepatocellular ERK1/2 activation, and increases nuclear Smad to increase hepcidin expression in hepatocytes.


Assuntos
Apoproteínas/farmacologia , Proteína Morfogenética Óssea 2/genética , Hepcidinas/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Transferrina/farmacologia , Talassemia beta/genética , Animais , Anticorpos Neutralizantes/farmacologia , Proteína Morfogenética Óssea 2/agonistas , Proteína Morfogenética Óssea 2/antagonistas & inibidores , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 6/genética , Proteína Morfogenética Óssea 6/metabolismo , Butadienos/farmacologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepcidinas/agonistas , Hepcidinas/antagonistas & inibidores , Hepcidinas/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Proteínas Smad/genética , Proteínas Smad/metabolismo , Talassemia beta/metabolismo , Talassemia beta/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA