Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mol Cell ; 70(3): 449-461.e5, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29727617

RESUMO

Hard-to-replicate regions of chromosomes (e.g., pericentromeres, centromeres, and telomeres) impede replication fork progression, eventually leading, in the event of replication stress, to chromosome fragility, aging, and cancer. Our knowledge of the mechanisms controlling the stability of these regions is essentially limited to telomeres, where fragility is counteracted by the shelterin proteins. Here we show that the shelterin subunit TRF2 ensures progression of the replication fork through pericentromeric heterochromatin, but not centromeric chromatin. In a process involving its N-terminal basic domain, TRF2 binds to pericentromeric Satellite III sequences during S phase, allowing the recruitment of the G-quadruplex-resolving helicase RTEL1 to facilitate fork progression. We also show that TRF2 is required for the stability of other heterochromatic regions localized throughout the genome, paving the way for future research on heterochromatic replication and its relationship with aging and cancer.


Assuntos
Replicação do DNA/genética , Genoma/genética , Heterocromatina/genética , Telômero/genética , Proteína 2 de Ligação a Repetições Teloméricas/genética , Linhagem Celular Tumoral , Centrômero/genética , Cromatina/genética , DNA Helicases/genética , Quadruplex G , Células HeLa , Humanos , Fase S/genética
2.
Cell ; 142(2): 230-42, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20655466

RESUMO

Human telomeres are protected from DNA damage by a nucleoprotein complex that includes the repeat-binding factor TRF2. Here, we report that TRF2 regulates the 5' exonuclease activity of its binding partner, Apollo, a member of the metallo-beta-lactamase family that is required for telomere integrity during S phase. TRF2 and Apollo also suppress damage to engineered interstitial telomere repeat tracts that were inserted far away from chromosome ends. Genetic data indicate that DNA topoisomerase 2alpha acts in the same pathway of telomere protection as TRF2 and Apollo. Moreover, TRF2, which binds preferentially to positively supercoiled DNA substrates, together with Apollo, negatively regulates the amount of TOP1, TOP2alpha, and TOP2beta at telomeres. Our data are consistent with a model in which TRF2 and Apollo relieve topological stress during telomere replication. Our work also suggests that cellular senescence may be caused by topological problems that occur during the replication of the inner portion of telomeres.


Assuntos
Antígenos de Neoplasias/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Replicação do DNA , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Senescência Celular , Dano ao DNA , Exodesoxirribonucleases , Humanos , Estrutura Terciária de Proteína
3.
Mol Cell ; 68(4): 643-644, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149592

RESUMO

In this issue of Molecular Cell, Kim et al. (2017) have studied the structure and organization of the shelterin protein complex protecting telomeres in Schizosaccharomyces pombe and humans and discovered an allosteric structural transition that drives the formation of the shelterin complex and participates in telomere length regulation.


Assuntos
Homeostase do Telômero/fisiologia , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Humanos , Schizosaccharomyces , Complexo Shelterina , Telômero/genética , Proteínas de Ligação a Telômeros/genética
4.
Mol Cell ; 61(2): 274-86, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26774283

RESUMO

The shelterin proteins protect telomeres against activation of the DNA damage checkpoints and recombinational repair. We show here that a dimer of the shelterin subunit TRF2 wraps ∼ 90 bp of DNA through several lysine and arginine residues localized around its homodimerization domain. The expression of a wrapping-deficient TRF2 mutant, named Top-less, alters telomeric DNA topology, decreases the number of terminal loops (t-loops), and triggers the ATM checkpoint, while still protecting telomeres against non-homologous end joining (NHEJ). In Top-less cells, the protection against NHEJ is alleviated if the expression of the TRF2-interacting protein RAP1 is reduced. We conclude that a distinctive topological state of telomeric DNA, controlled by the TRF2-dependent DNA wrapping and linked to t-loop formation, inhibits both ATM activation and NHEJ. The presence of RAP1 at telomeres appears as a backup mechanism to prevent NHEJ when topology-mediated telomere protection is impaired.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Pareamento de Bases , DNA/metabolismo , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Células HeLa , Humanos , Lisina/metabolismo , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína , Complexo Shelterina , Transdução de Sinais , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/química
5.
EMBO Rep ; 21(4): e49076, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32096305

RESUMO

Repressor/activator protein 1 (RAP1) is a highly evolutionarily conserved protein found at telomeres. Although yeast Rap1 is a key telomere capping protein preventing non-homologous end joining (NHEJ) and consequently telomere fusions, its role at mammalian telomeres in vivo is still controversial. Here, we demonstrate that RAP1 is required to protect telomeres in replicative senescent human cells. Downregulation of RAP1 in these cells, but not in young or dividing pre-senescent cells, leads to telomere uncapping and fusions. The anti-fusion effect of RAP1 was further explored in a HeLa cell line where RAP1 expression was depleted through an inducible CRISPR/Cas9 strategy. Depletion of RAP1 in these cells gives rise to telomere fusions only when telomerase is inhibited. We further show that the fusions triggered by RAP1 loss are dependent upon DNA ligase IV. We conclude that human RAP1 is specifically involved in protecting critically short telomeres. This has important implications for the functions of telomeres in senescent cells.


Assuntos
Telômero , Fator de Transcrição AP-1 , Animais , Senescência Celular/genética , Dano ao DNA , Células HeLa , Humanos , Telômero/genética , Proteínas de Ligação a Telômeros/genética
6.
Mol Cell ; 39(5): 665-76, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20832719

RESUMO

Telomere protection in budding yeast requires the heterotrimer named CST (for Cdc13-Stn1-Ten1). Recent data show that CST components are conserved and required for telomere stability in a wide range of eukaryotes, even those utilizing the shelterin complex to protect their telomeres. A common function of these proteins might be to stimulate priming at the C-strand gap that remains after telomerase elongation, replication termination, and terminal processing. In light of the budding yeast situation, another conserved function of CST might well be the regulation of telomerase. The cohabitation at telomeres of CST and shelterin components highlights the complexity of telomere biology.


Assuntos
Ciclina B/metabolismo , Replicação do DNA/fisiologia , DNA Fúngico/metabolismo , Saccharomycetales/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Ciclina B/genética , DNA Fúngico/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Saccharomycetales/genética , Proteínas de Schizosaccharomyces pombe/genética , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Proteínas de Ligação a Telômeros/genética
7.
Nucleic Acids Res ; 44(4): 1962-76, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26748096

RESUMO

Telomere integrity is essential to maintain genome stability, and telomeric dysfunctions are associated with cancer and aging pathologies. In human, the shelterin complex binds TTAGGG DNA repeats and provides capping to chromosome ends. Within shelterin, RAP1 is recruited through its interaction with TRF2, and TRF2 is required for telomere protection through a network of nucleic acid and protein interactions. RAP1 is one of the most conserved shelterin proteins although one unresolved question is how its interaction may influence TRF2 properties and regulate its capacity to bind multiple proteins. Through a combination of biochemical, biophysical and structural approaches, we unveiled a unique mode of assembly between RAP1 and TRF2. The complete interaction scheme between the full-length proteins involves a complex biphasic interaction of RAP1 that directly affects the binding properties of the assembly. These results reveal how a non-DNA binding protein can influence the properties of a DNA-binding partner by mutual conformational adjustments.


Assuntos
Proteínas de Ligação a DNA/genética , Instabilidade Genômica , Proteínas de Ligação a Telômeros/genética , Proteína 2 de Ligação a Repetições Teloméricas/genética , Dano ao DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Complexos Multiproteicos , Ligação Proteica , Complexo Shelterina , Telômero/genética , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
8.
Nucleic Acids Res ; 43(12): 5824-37, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-25999344

RESUMO

The ends of eukaryotic chromosomes need to be protected from the activation of a DNA damage response that leads the cell to replicative senescence or apoptosis. In mammals, protection is accomplished by a six-factor complex named shelterin, which organizes the terminal TTAGGG repeats in a still ill-defined structure, the telomere. The stable interaction of shelterin with telomeres mainly depends on the binding of two of its components, TRF1 and TRF2, to double-stranded telomeric repeats. Tethering of TRF proteins to telomeres occurs in a chromatin environment characterized by a very compact nucleosomal organization. In this work we show that binding of TRF1 and TRF2 to telomeric sequences is modulated by the histone octamer. By means of in vitro models, we found that TRF2 binding is strongly hampered by the presence of telomeric nucleosomes, whereas TRF1 binds efficiently to telomeric DNA in a nucleosomal context and is able to remodel telomeric nucleosomal arrays. Our results indicate that the different behavior of TRF proteins partly depends on the interaction with histone tails of their divergent N-terminal domains. We propose that the interplay between the histone octamer and TRF proteins plays a role in the steps leading to telomere deprotection.


Assuntos
Nucleossomos/metabolismo , Telômero/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Sítios de Ligação , DNA/metabolismo , Histonas/metabolismo , Nucleossomos/química , Ligação Proteica , Estrutura Terciária de Proteína , Sequências Repetitivas de Ácido Nucleico , Telômero/química , Proteína 1 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/química
9.
EMBO J ; 29(13): 2230-41, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20551906

RESUMO

Progressive telomere attrition or deficiency of the protective shelterin complex elicits a DNA damage response as a result of a cell's inability to distinguish dysfunctional telomeric ends from DNA double-strand breaks. SNMIB/Apollo is a shelterin-associated protein and a member of the SMN1/PSO2 nuclease family that localizes to telomeres through its interaction with TRF2. Here, we generated SNMIB/Apollo knockout mouse embryo fibroblasts (MEFs) to probe the function of SNMIB/Apollo at mammalian telomeres. SNMIB/Apollo null MEFs exhibit an increased incidence of G2 chromatid-type fusions involving telomeres created by leading-strand DNA synthesis, reflective of a failure to protect these telomeres after DNA replication. Mutations within SNMIB/Apollo's conserved nuclease domain failed to suppress this phenotype, suggesting that its nuclease activity is required to protect leading-strand telomeres. SNMIB/Apollo(-/-)ATM(-/-) MEFs display robust telomere fusions when Trf2 is depleted, indicating that ATM is dispensable for repair of uncapped telomeres in this setting. Our data implicate the 5'-3' exonuclease function of SNM1B/Apollo in the generation of 3' single-stranded overhangs at newly replicated leading-strand telomeres to protect them from engaging the non-homologous end-joining pathway.


Assuntos
Reparo do DNA , Fibroblastos/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Aminopeptidases/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Cromossomos/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Embrião de Mamíferos/citologia , Exodesoxirribonucleases , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo , Serina Proteases/metabolismo , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Tripeptidil-Peptidase 1 , Proteínas Supressoras de Tumor/metabolismo
10.
EMBO J ; 29(9): 1573-84, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20407424

RESUMO

DNA-dependent protein kinase (DNA-PK) is a double-strand breaks repair complex, the subunits of which (KU and DNA-PKcs) are paradoxically present at mammalian telomeres. Telomere fusion has been reported in cells lacking these proteins, raising two questions: how is DNA-PK prevented from initiating classical ligase IV (LIG4)-dependent non-homologous end-joining (C-NHEJ) at telomeres and how is the backup end-joining (EJ) activity (B-NHEJ) that operates at telomeres under conditions of C-NHEJ deficiency controlled? To address these questions, we have investigated EJ using plasmid substrates bearing double-stranded telomeric tracks and human cell extracts with variable C-NHEJ or B-NHEJ activity. We found that (1) TRF2/RAP1 prevents C-NHEJ-mediated end fusion at the initial DNA-PK end binding and activation step and (2) DNA-PK counteracts a potent LIG4-independent EJ mechanism. Thus, telomeres are protected against EJ by a lock with two bolts. These results account for observations with mammalian models and underline the importance of alternative non-classical EJ pathways for telomere fusions in cells.


Assuntos
Reparo do DNA , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , DNA/metabolismo , DNA Ligase Dependente de ATP , DNA Ligases/metabolismo , Instabilidade Genômica , Células HeLa , Humanos , Complexo Shelterina
11.
Nucleic Acids Res ; 40(6): 2566-76, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22139926

RESUMO

TRF1 and TRF2 are key proteins in human telomeres, which, despite their similarities, have different behaviors upon DNA binding. Previous work has shown that unlike TRF1, TRF2 condenses telomeric, thus creating consequential negative torsion on the adjacent DNA, a property that is thought to lead to the stimulation of single-strand invasion and was proposed to favor telomeric DNA looping. In this report, we show that these activities, originating from the central TRFH domain of TRF2, are also displayed by the TRFH domain of TRF1 but are repressed in the full-length protein by the presence of an acidic domain at the N-terminus. Strikingly, a similar repression is observed on TRF2 through the binding of a TERRA-like RNA molecule to the N-terminus of TRF2. Phylogenetic and biochemical studies suggest that the N-terminal domains of TRF proteins originate from a gradual extension of the coding sequences of a duplicated ancestral gene with a consequential progressive alteration of the biochemical properties of these proteins. Overall, these data suggest that the N-termini of TRF1 and TRF2 have evolved to finely regulate their ability to condense DNA.


Assuntos
Telômero/química , Proteína 1 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/química , Sequência de Aminoácidos , DNA/química , DNA/metabolismo , Evolução Molecular , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , RNA/metabolismo , Homologia de Sequência de Aminoácidos , Telômero/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo
12.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 3): 409-19, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23519416

RESUMO

Repressor activator protein 1 (Rap1) is an essential factor involved in transcription and telomere stability in the budding yeast Saccharomyces cerevisiae. Its interaction with DNA causes hypersensitivity to potassium permanganate, suggesting local DNA melting and/or distortion. In this study, various Rap1-DNA crystal forms were obtained using specifically designed crystal screens. Analysis of the DNA conformation showed that its distortion was not sufficient to explain the permanganate reactivity. However, anomalous data collected at the Mn edge using a Rap1-DNA crystal soaked in potassium permanganate solution indicated that the DNA conformation in the crystal was compatible with interaction with permanganate ions. Sequence-conservation analysis revealed that double-Myb-containing Rap1 proteins all carry a fully conserved Arg580 at a position that may favour interaction with permanganate ions, although it is not involved in the hypersensitive cytosine distortion. Permanganate reactivity assays with wild-type Rap1 and the Rap1[R580A] mutant demonstrated that Arg580 is essential for hypersensitivity. AFM experiments showed that wild-type Rap1 and the Rap1[R580A] mutant interact with DNA over 16 successive binding sites, leading to local DNA stiffening but not to accumulation of the observed local distortion. Therefore, Rap1 may cause permanganate hypersensitivity of DNA by forming a pocket between the reactive cytosine and Arg580, driving the permanganate ion towards the C5-C6 bond of the cytosine.


Assuntos
DNA Fúngico/química , DNA Fúngico/metabolismo , Permanganato de Potássio/química , Permanganato de Potássio/farmacologia , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Proteínas de Ligação a Telômeros/química , Fatores de Transcrição/química , Arginina/química , Cristalografia por Raios X , Citosina/química , DNA Fúngico/efeitos dos fármacos , Ligação de Hidrogênio/efeitos dos fármacos , Conformação de Ácido Nucleico/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo Shelterina , Soluções , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
EMBO J ; 28(6): 641-51, 2009 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-19197240

RESUMO

The ability of the telomeric DNA-binding protein, TRF2, to stimulate t-loop formation while preventing t-loop deletion is believed to be crucial to maintain telomere integrity in mammals. However, little is known on the molecular mechanisms behind these properties of TRF2. In this report, we show that TRF2 greatly increases the rate of Holliday junction (HJ) formation and blocks the cleavage by various types of HJ resolving activities, including the newly identified human GEN1 protein. By using potassium permanganate probing and differential scanning calorimetry, we reveal that the basic domain of TRF2 induces structural changes to the junction. We propose that TRF2 contributes to t-loop stabilisation by stimulating HJ formation and by preventing resolvase cleavage. These findings provide novel insights into the interplay between telomere protection and homologous recombination and suggest a general model in which TRF2 maintains telomere integrity by controlling the turnover of HJ at t-loops and at regressed replication forks.


Assuntos
DNA Cruciforme/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Bactérias/enzimologia , Pareamento de Bases , Sequência de Bases , Bioensaio , Histidina/metabolismo , Resolvases de Junção Holliday/metabolismo , Humanos , Dados de Sequência Molecular , Permanganato de Potássio/farmacologia , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Recombinases/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteína 2 de Ligação a Repetições Teloméricas/química
14.
Genetics ; 223(3)2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563016

RESUMO

Telomeres are ribonucleoproteins that cap chromosome-ends and their DNA length is controlled by counteracting elongation and shortening processes. The budding yeast Saccharomyces cerevisiae has been a leading model to study telomere DNA length control and dynamics. Its telomeric DNA is maintained at a length that slightly varies between laboratory strains, but little is known about its variation at the species level. The recent publication of the genomes of over 1,000 S. cerevisiae strains enabled us to explore telomere DNA length variation at an unprecedented scale. Here, we developed a bioinformatic pipeline (YeaISTY) to estimate telomere DNA length from whole-genome sequences and applied it to the sequenced S. cerevisiae collection. Our results revealed broad natural telomere DNA length variation among the isolates. Notably, telomere DNA length is shorter in those derived from wild rather than domesticated environments. Moreover, telomere DNA length variation is associated with mitochondrial metabolism, and this association is driven by wild strains. Overall, these findings reveal broad variation in budding yeast's telomere DNA length regulation, which might be shaped by its different ecological life-styles.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telômero/genética , Telômero/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ligação a Telômeros/genética , Sequência de Bases
15.
Nat Commun ; 14(1): 3038, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37263999

RESUMO

Telomeres are environment-sensitive regulators of health and aging. Here,we present telomere DNA length analysis of two reef-building coral genera revealing that the long- and short-term water thermal regime is a key driver of between-colony variation across the Pacific Ocean. Notably, there are differences between the two studied genera. The telomere DNA lengths of the short-lived, more stress-sensitive Pocillopora spp. colonies were largely determined by seasonal temperature variation, whereas those of the long-lived, more stress-resistant Porites spp. colonies were insensitive to seasonal patterns, but rather influenced by past thermal anomalies. These results reveal marked differences in telomere DNA length regulation between two evolutionary distant coral genera exhibiting specific life-history traits. We propose that environmentally regulated mechanisms of telomere maintenance are linked to organismal performances, a matter of paramount importance considering the effects of climate change on health.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Temperatura , Estações do Ano , DNA/genética
16.
EMBO J ; 27(10): 1513-24, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-18418389

RESUMO

Topoisomerase (Topo) IIIalpha associates with BLM helicase, which is proposed to be important in the alternative lengthening of telomeres (ALT) pathway that allows telomere recombination in the absence of telomerase. Here, we show that human Topo IIIalpha colocalizes with telomeric proteins at ALT-associated promyelocytic bodies from ALT cells. In these cells, Topo IIIalpha immunoprecipitated with telomere binding protein (TRF) 2 and BLM and was shown to be associated with telomeric DNA by chromatin immunoprecipitation, suggesting that these proteins form a complex at telomere sequences. Topo IIIalpha depletion by small interfering RNA reduced ALT cell survival, but did not affect telomerase-positive cell lines. Moreover, repression of Topo IIIalpha expression in ALT cells reduced the levels of TRF2 and BLM proteins, provoked a strong increase in the formation of anaphase bridges, induced the degradation of the G-overhang signal, and resulted in the appearance of DNA damage at telomeres. In contrast, telomere maintenance and TRF2 levels were unaffected in telomerase-positive cells. We conclude that Topo IIIalpha is an important telomere-associated factor, essential for telomere maintenance and chromosome stability in ALT cells, and speculate on its potential mechanistic function.


Assuntos
Instabilidade Cromossômica , DNA Topoisomerases Tipo I/metabolismo , Telômero/metabolismo , Telômero/ultraestrutura , Adenosina Trifosfatases/análise , Adenosina Trifosfatases/metabolismo , Anáfase , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Imunoprecipitação da Cromatina , Instabilidade Cromossômica/genética , DNA Helicases/análise , DNA Helicases/metabolismo , DNA Topoisomerases Tipo I/análise , DNA Topoisomerases Tipo I/genética , Humanos , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/análise , Proteínas Nucleares/metabolismo , Proteína da Leucemia Promielocítica , Subunidades Proteicas/análise , Subunidades Proteicas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , RecQ Helicases , Complexo Shelterina , Proteínas de Ligação a Telômeros/análise , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/análise , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Fatores de Transcrição/análise , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/análise , Proteínas Supressoras de Tumor/metabolismo
17.
Nat Struct Mol Biol ; 14(2): 147-54, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17220898

RESUMO

Telomeres can fold into t-loops that may result from the invasion of the 3' overhang into duplex DNA. Their formation is facilitated in vitro by the telomeric protein TRF2, but very little is known regarding the mechanisms involved. Here we reveal that TRF2 generates positive supercoiling and condenses DNA. Using a variety of TRF2 mutants, we demonstrate a strong correlation between this topological activity and the ability to stimulate strand invasion. We also report that these properties require the combination of the TRF-homology (TRFH) domain of TRF2 with either its N- or C-terminal DNA-binding domains. We propose that TRF2 complexes, by constraining DNA around themselves in a right-handed conformation, can induce untwisting of the neighboring DNA, thereby favoring strand invasion. Implications of this topological model in t-loop formation and telomere homeostasis are discussed.


Assuntos
DNA/química , Telômero/química , Proteína 2 de Ligação a Repetições Teloméricas/química , DNA Super-Helicoidal/química , Humanos , Microscopia de Força Atômica , Conformação de Ácido Nucleico , Proteína 1 de Ligação a Repetições Teloméricas/química
18.
Cells ; 10(7)2021 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-34359923

RESUMO

Protecting telomere from the DNA damage response is essential to avoid the entry into cellular senescence and organismal aging. The progressive telomere DNA shortening in dividing somatic cells, programmed during development, leads to critically short telomeres that trigger replicative senescence and thereby contribute to aging. In several organisms, including mammals, telomeres are protected by a protein complex named Shelterin that counteract at various levels the DNA damage response at chromosome ends through the specific function of each of its subunits. The changes in Shelterin structure and function during development and aging is thus an intense area of research. Here, we review our knowledge on the existence of several Shelterin subcomplexes and the functional independence between them. This leads us to discuss the possibility that the multifunctionality of the Shelterin complex is determined by the formation of different subcomplexes whose composition may change during aging.


Assuntos
Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Animais , DNA/metabolismo , Replicação do DNA , Humanos , Modelos Moleculares , Estrutura Quaternária de Proteína , Proteínas de Ligação a Telômeros/química
19.
J Biol Inorg Chem ; 15(5): 641-54, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20191372

RESUMO

Telomeres, the nucleoprotein complexes located at the ends of chromosomes, are involved in chromosome protection and genome stability. Telomeric repeat binding factor 1 (TRF1) and telomeric repeat binding factor 2 (TRF2) are the two telomeric proteins that bind to duplex telomeric DNA through interactions between their C-terminal domain and several guanines of the telomeric tract. Since the antitumour drug cisplatin binds preferentially to two adjacent guanines, we have investigated whether cisplatin adducts could affect the binding of TRF1 and TRF2 to telomeric DNA and the property of TRF2 to stimulate telomeric invasion, a process that is thought to participate in the formation of the t-loop. We show that the binding of TRF1 and TRF2 to telomeric sequences selectively modified by one GG chelate of cisplatin is markedly affected by cisplatin but that the effect is more drastic for TRF2 than for TRF1 (3-5-fold more sensitivity for TRF2 than for TRF1). We also report that platinum adducts cause a decrease in TRF2-dependent stimulation of telomeric invasion in vitro. Finally, in accordance with in vitro data, analysis of telomeric composition after cisplatin treatment reveals that 60% of TRF2 dissociate from telomeres.


Assuntos
Cisplatino/química , Cisplatino/farmacologia , DNA/química , DNA/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/química , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular , DNA/síntese química , Humanos , Ligação Proteica/efeitos dos fármacos , Complexo Shelterina , Telômero/metabolismo
20.
Nat Struct Mol Biol ; 27(4): 313-318, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32231287

RESUMO

Telomeres arose from the need to stabilize natural chromosome ends, resulting in terminal chromatin structures with specific protective functions. Their constituent proteins also execute general functions within heterochromatin, mediating late replication and facilitating fork progression. Emerging insights into the mechanisms governing heterochromatin replication suggest telomeres and heterochromatin act in concert during development and aging. They also suggest a common evolutionary origin for these two chromosome regions that arose during eukaryogenesis.


Assuntos
Cromatina/genética , Heterocromatina/genética , Proteínas/genética , Telômero/genética , Cromatina/ultraestrutura , Replicação do DNA/genética , Heterocromatina/ultraestrutura , Humanos , Proteínas/química , Proteínas/ultraestrutura , Telômero/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA