Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 35(23): 8925-37, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26063924

RESUMO

The pathophysiology of essential tremor (ET), the most common movement disorder, is not fully understood. We investigated which factors determine the variability in the phase difference between neural drives to antagonist muscles, a long-standing observation yet unexplained. We used a computational model to simulate the effects of different levels of voluntary and tremulous synaptic input to antagonistic motoneuron pools on the tremor. We compared these simulations to data from 11 human ET patients. In both analyses, the neural drive to muscle was represented as the pooled spike trains of several motor units, which provides an accurate representation of the common synaptic input to motoneurons. The simulations showed that, for each voluntary input level, the phase difference between neural drives to antagonist muscles is determined by the relative strength of the supraspinal tremor input to the motoneuron pools. In addition, when the supraspinal tremor input to one muscle was weak or absent, Ia afferents provided significant common tremor input due to passive stretch. The simulations predicted that without a voluntary drive (rest tremor) the neural drives would be more likely in phase, while a concurrent voluntary input (postural tremor) would lead more frequently to an out-of-phase pattern. The experimental results matched these predictions, showing a significant change in phase difference between postural and rest tremor. They also indicated that the common tremor input is always shared by the antagonistic motoneuron pools, in agreement with the simulations. Our results highlight that the interplay between supraspinal input and spinal afferents is relevant for tremor generation.


Assuntos
Potenciais de Ação/fisiologia , Tremor Essencial/patologia , Neurônios Motores/fisiologia , Músculo Esquelético/fisiopatologia , Medula Espinal/patologia , Idoso , Animais , Simulação por Computador , Eletromiografia , Feminino , Humanos , Masculino , Modelos Biológicos , Estatísticas não Paramétricas , Sinapses/fisiologia , Vibrissas/inervação
2.
IEEE Trans Neural Syst Rehabil Eng ; 27(1): 66-75, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30571641

RESUMO

We describe the method for identification of motor unit (MU) firings from high-density surface electromyograms (hdEMG), recorded during repeated dynamic muscle contractions. A new convolutive data model for dynamic hdEMG is presented, along with the pulse-to-noise ratio (PNR) metric for assessment of MU identification accuracy and analysis of the impact of MU action potential (MUAP) changes in dynamic muscle contractions on MU identification. We tested the presented methodology on signals from biceps brachii, vastus lateralis, and rectus famoris muscles, all during different speeds of dynamic contractions. In synthetic signals with excitation levels of 10%, 30% and 50%, and MUAPs experimentally recorded from biceps brachii muscle, the presented method identified 15 ± 1, 18 ± 1, and 20 ± 1 MUs per contraction, respectively, all with average sensitivity and precision >90% and PNR >30dB. In experimental signals acquired during low force contractions of vastus lateralis and rectus femoris muscle, the method identified 9.4±1.9 and 7.8±1.4 MUs with PNR values of 35.4±3.6 and 34.1±2.7 dB. In comparison with the previously introduced Convolution Kernel Compensation method, the capability of the new method to follow dynamic MUAP changes is confirmed, also in relatively fast muscle contractions.


Assuntos
Eletromiografia/métodos , Neurônios Motores/fisiologia , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Potenciais de Ação/fisiologia , Adulto , Algoritmos , Músculos Isquiossurais/fisiologia , Humanos , Contração Isométrica/fisiologia , Masculino , Músculo Esquelético/inervação , Reprodutibilidade dos Testes , Razão Sinal-Ruído
3.
IEEE Trans Neural Syst Rehabil Eng ; 26(10): 1935-1944, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30281464

RESUMO

We compared non-negative matrix factorization (NMF) and convolution kernel compensation techniques for high-density electromyogram decomposition. The experimental data were recorded from nine healthy persons during controlled single degree of freedom (DOF) wrist flexion-extension, supination-pronation, and ulnar-radial deviation movements. We assembled the identified motor units and NMF components into three groups. Those active mostly during the first and the second movement direction per DOF were placed in the G1 and G3 groups, respectively. The remaining components were nonspecific for movement direction and were placed in the G2 group. In ulnar and radial deviation, the relative energies of identified cumulative motor unit spike trains (CSTs) and NMF components were similarly distributed among the groups. In other two movement types, the energy of NMF components in the G2 group was significantly larger than the energy of CSTs. We further performed a coherence analysis between CSTs and sums of NMF components in each group. Both decompositions demonstrated a solid match, but only at frequencies <3 Hz. At higher frequencies, the coherence hardly exceeded the value of 0.5. Potential reasons for these discrepancies include the negative impact of motor unit action potential shapes and noise on NMF decomposition.


Assuntos
Eletromiografia/estatística & dados numéricos , Potenciais de Ação/fisiologia , Adulto , Algoritmos , Interpretação Estatística de Dados , Feminino , Voluntários Saudáveis , Humanos , Masculino , Neurônios Motores/fisiologia , Movimento/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Pronação , Nervo Radial/fisiologia , Supinação , Nervo Ulnar/fisiologia , Punho/inervação , Punho/fisiologia
4.
Front Neurol ; 9: 879, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30420827

RESUMO

Background: Traditional studies on the neural mechanisms of tremor use coherence analysis to investigate the relationship between cortical and muscle activity, measured by electroencephalograms (EEG) and electromyograms (EMG). This methodology is limited by the need of relatively long signal recordings, and it is sensitive to EEG artifacts. Here, we analytically derive and experimentally validate a new method for automatic extraction of the tremor-related EEG component in pathological tremor patients that aims to overcome these limitations. Methods: We exploit the coupling between the tremor-related cortical activity and motor unit population firings to build a linear minimum mean square error estimator of the tremor component in EEG. We estimated the motor unit population activity by decomposing surface EMG signals into constituent motor unit spike trains, which we summed up into a cumulative spike train (CST). We used this CST to initialize our tremor-related EEG component estimate, which we optimized using a novel approach proposed here. Results: Tests on simulated signals demonstrate that our new method is robust to both noise and motor unit firing variability, and that it performs well across a wide range of spectral characteristics of the tremor. Results on 9 essential (ET) and 9 Parkinson's disease (PD) patients show a ~2-fold increase in amplitude of the coherence between the estimated EEG component and the CST, compared to the classical EEG-EMG coherence analysis. Conclusions: We have developed a novel method that allows for more precise and robust estimation of the tremor-related EEG component. This method does not require artifact removal, provides reliable results in relatively short datasets, and tracks changes in the tremor-related cortical activity over time.

5.
IEEE Trans Neural Syst Rehabil Eng ; 21(6): 949-58, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23475379

RESUMO

This study addresses online decomposition of high-density surface electromyograms (EMG) in real time. The proposed method is based on the previously published Convolution Kernel Compensation (CKC) technique and shares the same decomposition paradigm, i.e., compensation of motor unit action potentials and direct identification of motor unit (MU) discharges. In contrast to previously published version of CKC, which operates in batch mode and requires  âˆ¼ 10 s of EMG signal, the real-time implementation begins with batch processing of  âˆ¼ 3 s of the EMG signal in the initialization stage and continues on with iterative updating of the estimators of MU discharges as blocks of new EMG samples become available. Its detailed comparison to previously validated batch version of CKC and asymptotically Bayesian optimal linear minimum mean square error (LMMSE) estimator demonstrates high agreement in identified MU discharges among all three techniques. In the case of synthetic surface EMG with 20 dB signal-to-noise ratio, MU discharges were identified with average sensitivity of 98%. In the case of experimental EMG, real-time CKC fully converged after initial 5 s of EMG recordings and real-time and batch CKC agreed on 90% of MU discharges, on average. The real-time CKC identified slightly fewer MUs than its batch version (experimental EMG, 4 MUs versus 5 MUs identified by batch CKC, on average), but required only 0.6 s of processing time on regular personal computer for each second of multichannel surface EMG.


Assuntos
Potenciais de Ação/fisiologia , Eletromiografia/métodos , Contração Isométrica/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Junção Neuromuscular/fisiologia , Transmissão Sináptica/fisiologia , Algoritmos , Sistemas Computacionais , Humanos , Masculino , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA