RESUMO
Tobacco control policies reinforce a health imperative that positions citizens as duty-bound to manage their health by abstaining from or quitting smoking. Limited attention is paid to the repercussions - especially for lung screening - of anti-smoking rhetoric emphasising individual responsibility. Drawing on interviews with 27 long-term smokers involved in an international lung screening trial, this study analysed Australian smokers' narratives of smoking. By attending to stigma and the use of public health rhetoric within personal narratives, we show how narratives underscoring individual responsibility for quitting were layered with conflicting explanations of biological responsibility and normative expectations. Ironically, narratives of individual responsibility potentially undermine smoking cessation. In positioning smokers as responsible for their own healthy choices, such rhetoric also positions smokers as responsible for managing their emotional health, which some did through smoking. Thus, anti-smoking campaigns pit the neoliberal imperative of health against the happiness imperative. These findings have implications for the design and delivery of lung screening campaigns. They also support calls to move beyond health messaging emphasising individual choice, towards acknowledging the moral power of structures and public health campaigns to discipline citizens in unintended ways.
Assuntos
Felicidade , Abandono do Hábito de Fumar , Humanos , Austrália , Abandono do Hábito de Fumar/psicologia , Promoção da Saúde , PulmãoRESUMO
Particulate matter (PM) emissions involve a complex mixture of solid and liquid particles suspended in a gas, where it is noted that PM emissions from diesel engines are a major contributor to the ambient air pollution problem. While epidemiological studies have shown a link between increased ambient PM emissions and respiratory morbidity and mortality, studies of this design are not able to identify the PM constituents responsible for driving adverse respiratory health effects. This review explores in detail the physico-chemical properties of diesel PM (DPM) and identifies the constituents of this pollution source that are responsible for the development of respiratory disease. In particular, this review shows that the DPM surface area and adsorbed organic compounds play a significant role in manifesting chemical and cellular processes that if sustained can lead to the development of adverse respiratory health effects. The mechanisms of injury involved included inflammation, innate and acquired immunity, and oxidative stress. Understanding the mechanisms of lung injury from DPM will enhance efforts to protect at-risk individuals from the harmful respiratory effects of air pollutants.
Assuntos
Poluentes Atmosféricos/efeitos adversos , Nível de Saúde , Material Particulado/efeitos adversos , Doenças Respiratórias/epidemiologia , Emissões de Veículos , Humanos , Morbidade/tendências , Doenças Respiratórias/etiologia , Fatores de RiscoRESUMO
Soluble egg antigen (SEA) from the helminth Schistosoma mansoni promotes T helper type 2 (Th2) responses by modulating antigen-presenting cell function. The Jagged/Notch pathway has recently been implicated in driving Th2 development. We show here that SEA rapidly up-regulated mRNA and protein expression of the Notch ligand Jagged-1 in both murine bone marrow-derived macrophages (BMMs) and human monocyte-derived macrophages (HMDMs). Another potential Th2-promoting factor, interleukin (IL)-33, was not transcriptionally induced by SEA in BMMs. Up-regulation of Jagged-1 mRNA by SEA was also apparent in conventional dendritic cells (DCs), although the effect was less striking than in BMMs. Conversely, SEA-pulsed DCs, but not BMMs, promoted IL-4 production upon T-cell activation, suggesting that Jagged-1 induction alone is insufficient for instructing Th2 development. A comparison of the responses initiated in BMMs by SEA and the bacterial endotoxin lipopolysaccharide (LPS) revealed common activation of extracellular signal-regulated kinase-1/2 (ERK-1/2) and p38 phosphorylation, as well as induction of Jagged-1 mRNA. However, only LPS triggered IkappaB degradation, phosphorylation of c-Jun N-terminal kinase (Jnk) and signal transducer and activator of transcription 1 (Stat1) Tyr701, and IL-33 and IL-12p40 mRNA up-regulation. Inducible gene expression was modified by the presence of the macrophage growth factor colony-stimulating factor (CSF)-1, which inhibited Jagged-1 induction by SEA and LPS, but enhanced LPS-induced IL-12p40 expression. Unlike LPS, SEA robustly activated signalling in HEK293 cells expressing either Toll-like receptor 2 (TLR2) or TLR4/MD2. Pharmacological inhibition of the ERK-1/2 pathway impaired SEA- and LPS-inducible Jagged-1 expression in BMMs. Taken together, our data suggest that Jagged-1 is an ERK-dependent target of TLR signalling that has a macrophage-specific function in the response to SEA.
Assuntos
Antígenos de Helmintos/imunologia , Proteínas de Ligação ao Cálcio/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Macrófagos/imunologia , Proteínas de Membrana/biossíntese , Schistosoma mansoni/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Cultivadas , Ativação Enzimática/imunologia , Regulação da Expressão Gênica/imunologia , Humanos , Proteína Jagged-1 , Lipopolissacarídeos/imunologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Serrate-Jagged , Transdução de Sinais/imunologia , Células Th2/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologiaRESUMO
BACKGROUND: Culture-independent methods such as quantitative polymerase chain reaction (qPCR) are more sensitive for detecting pathogens than conventional culture. This study aimed to test the clinical potential of a multiple target qPCR array in identifying sputum pathogens, compared to traditional culture. METHODS: Forty chronic obstructive pulmonary disease (COPD) patients provided spontaneous sputum and blood samples during an exacerbation event (n=25 patients) and in stable state (n=15 patients). Sputum was processed and analysed by microscopy, culture and sensitivity testing (MCS) to identify living microbial isolates, and multiple target qPCR (44 targets for bacterial and fungal pathogens and antibiotic resistance genes), and 16S rRNA gene sequencing. RESULTS: Six microbial isolates (5 bacterial, 1 fungal) were cultured from 20 exacerbation and 10 stable patient sputum samples. Four of these microbial isolates had their presence in patient sputum confirmed by qPCR. All bacterial targets detected by qPCR were further confirmed by 16S rRNA gene sequencing at a genus level. qPCR identified significantly more bacterial pathogens than culture (P<0.001). The most prevalent bacterial species identified by qPCR were Streptococcus pneumoniae (72% of patients), Pseudomonas aeruginosa (40%), Prevotella oris (32%) and Haemophilus influenzae (17%). Microbial species diversity and richness were not significantly different between samples obtained from exacerbating and clinically stable cases. 16S rRNA gene sequencing identified Pseudomonas 4408227 (P=0.022, FDR =0.043 AUC =0.72) as a significantly different bacterial OTU (operational taxonomic units) in exacerbation sputum samples compared to stable state samples. CONCLUSIONS: Multiple target qPCR was more sensitive for detection of sputum pathogens in COPD patients than conventional culture. 16S rRNA gene sequencing confirmed the identity at a genus level of all bacterial targets detected by qPCR, as well as identifying bacterial OTUs that could potentially be used to distinguish between exacerbation and stable COPD disease states. Multiple target qPCR pathogen detection in the sputum of COPD patients warrants further investigation to determine how it may influence COPD clinical management.
RESUMO
Lung cancer encompasses multiple malignant epithelial tumour types, each with specific targetable, potentially actionable mutations, such that precision management mandates accurate tumour typing. Molecular characterisation studies require high tumour cell content and low necrosis content, yet lung cancers are frequently a heterogeneous mixture of tumour and stromal cells. We hypothesised that there may be systematic differences in tumour cell content according to histological subtype, and that this may have implications for tumour banks as a resource for comprehensive molecular characterisation studies in lung cancer. To investigate this, we estimated tumour cell and necrosis content of 4267 samples resected from 752 primary lung tumour specimens contributed to a lung tissue bank. We found that banked lung cancer samples had low tumour cell content (33%) generally, although it was higher in carcinoids (77.5%) than other lung cancer subtypes. Tumour cells comprise a variable and often small component of banked resected tumour samples, and are accompanied by stromal reaction, inflammation, fibrosis, and normal structures. This has implications for the adequacy of unselected tumour bank samples for diagnostic and molecular investigations, and further research is needed to determine whether tumour cell content has a significant impact on analytical results in studies using tissue from tumour bank resources.
Assuntos
Adenocarcinoma/patologia , Tumor Carcinoide/patologia , Carcinoma de Células Escamosas/patologia , Neoplasias Pulmonares/patologia , Bancos de Tecidos , Adenocarcinoma/classificação , Tumor Carcinoide/classificação , Carcinoma de Células Escamosas/classificação , Humanos , Pulmão/patologia , Neoplasias Pulmonares/classificação , Necrose , Células Estromais/patologiaRESUMO
Disease progression of chronic obstructive pulmonary disease (COPD) is variable, with some patients having a relatively stable course, while others suffer relentless progression leading to severe breathlessness, frequent acute exacerbations of COPD (AECOPD), respiratory failure and death. Radiological markers such as CT emphysema index, bronchiectasis and coronary artery calcification (CAC) have been linked with increased mortality in COPD patients. Molecular changes in lung tissue reflect alterations in lung pathology that occur with disease progression; however, lung tissue is not routinely accessible. Cell counts (including neutrophils) and mediators in induced sputum have been associated with lung function and risk of exacerbations. Examples of peripheral blood biological markers (biomarkers) include those associated with lung function (reduced CC-16), emphysema severity (increased adiponectin, reduced sRAGE), exacerbations and mortality [increased CRP, fibrinogen, leukocyte count, IL-6, IL-8, and tumor necrosis factor α (TNF-α)] including increased YKL-40 with mortality. Emerging approaches to discovering markers of gene-environment interaction include exhaled breath analysis [volatile organic compounds (VOCs), exhaled breath condensate], cellular and systemic responses to exposure to air pollution, alterations in the lung microbiome, and biomarkers of lung ageing such as telomere length shortening and reduced levels of sirtuins. Overcoming methodological challenges in sampling and quality control will enable more robust yet easily accessible biomarkers to be developed and qualified, in order to optimise personalised medicine in patients with COPD.
RESUMO
Presence of bone marrow elements in cerebrospinal fluid is rare. Journal publications on this topic are few and majority of them were written over a decade ago mostly as case reports in young children or the elderly. The increased cellularity and presence of myeloid precursors can be a pitfall and may be misdiagnosed as leukemia or lymphoma or central nervous system infection, when the specimen is actually not representative. With the intention to create awareness of potential pitfalls and avoid erroneous diagnoses, as well as adding on to the current photo archive of bone marrow elements in CSF, we present a recent case of bone marrow contaminants in the CSF of a 16-year-old girl.
RESUMO
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by persistent airflow limitation. It is the third leading cause of death worldwide, and there are currently no curative strategies for this disease. Many factors contribute to COPD susceptibility, progression and exacerbations. These include cigarette smoking, environmental and occupational pollutants, respiratory infections and comorbidities. As the clinical phenotypes of COPD are so variable, it has been difficult to devise an individualized treatment plan for patients with this complex chronic disease. This review will highlight how potential clinical, inflammatory, genomic and epigenomic biomarkers for COPD could be used to personalize treatment, leading to improved disease management and prevention for our patients.
Assuntos
Terapia de Alvo Molecular/tendências , Medicina de Precisão/tendências , Doença Pulmonar Obstrutiva Crônica/terapia , Biomarcadores/metabolismo , Gerenciamento Clínico , Epigenômica , Humanos , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismoRESUMO
Lung cancer is a leading cause of cancer related morbidity and mortality globally, and carries a dismal prognosis. Improved understanding of the biology of cancer is required to improve patient outcomes. Next-generation sequencing (NGS) is a powerful tool for whole genome characterisation, enabling comprehensive examination of somatic mutations that drive oncogenesis. Most NGS methods are based on polymerase chain reaction (PCR) amplification of platform-specific DNA fragment libraries, which are then sequenced. These techniques are well suited to high-throughput sequencing and are able to detect the full spectrum of genomic changes present in cancer. However, they require considerable investments in time, laboratory infrastructure, computational analysis and bioinformatic support. Next-generation sequencing has been applied to studies of the whole genome, exome, transcriptome and epigenome, and is changing the paradigm of lung cancer research and patient care. The results of this new technology will transform current knowledge of oncogenic pathways and provide molecular targets of use in the diagnosis and treatment of cancer. Somatic mutations in lung cancer have already been identified by NGS, and large scale genomic studies are underway. Personalised treatment strategies will improve care for those likely to benefit from available therapies, while sparing others the expense and morbidity of futile intervention. Organisational, computational and bioinformatic challenges of NGS are driving technological advances as well as raising ethical issues relating to informed consent and data release. Differentiation between driver and passenger mutations requires careful interpretation of sequencing data. Challenges in the interpretation of results arise from the types of specimens used for DNA extraction, sample processing techniques and tumour content. Tumour heterogeneity can reduce power to detect mutations implicated in oncogenesis. Next-generation sequencing will facilitate investigation of the biological and clinical implications of such variation. These techniques can now be applied to single cells and free circulating DNA, and possibly in the future to DNA obtained from body fluids and from subpopulations of tumour. As costs reduce, and speed and processing accuracy increase, NGS technology will become increasingly accessible to researchers and clinicians, with the ultimate goal of improving the care of patients with lung cancer.