Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611809

RESUMO

Nowadays, drug delivery systems (DDSs) are gaining more and more attention. Conducting polymers (CPs) are efficiently used for DDS construction as such systems can be used in therapy. In this research, a well-known CP, polypyrrole (PPy), was synthesized in the presence of the polysaccharide heparin (HEP) and chlorpromazine (CPZ) using sodium dodecyl sulfate (SDS) as electrolyte on a steel substrate. The obtained results demonstrate the successful incorporation of CPZ and HEP into the polymer matrix, with the deposited films maintaining stable electrochemical parameters across multiple doping/dedoping cycles. Surface roughness, estimated via AFM analysis, revealed a correlation with layer thickness-decreasing for thinner layers and increasing for thicker ones. Moreover, SEM images revealed a change in the morphology of PPy films when PPy is electropolymerized in the presence of CPZ and HEP, while FTIR confirmed the presence of CPZ and HEP within PPy. Due to its lower molecular mass compared to HEP, CPZ was readily integrated into the thin polymer matrix during deposition, with diffusion being unimpeded, as opposed to films with greater thickness. Finally, the resulting system exhibited the ability to release CPZ, enabling a dosing range of 10 mg to 20 mg per day, effectively covering the therapeutic concentration range.


Assuntos
Clorpromazina , Polímeros , Pirróis , Sistemas de Liberação de Medicamentos , Heparina
2.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047604

RESUMO

Heavy metals and other organic pollutants burden the environment, and their removal or neutralization is still inadequate. The great potential for development in this area includes porous, spherical silica nanostructures with a well-developed active surface and open porosity. In this context, we modified the surface of silica spheres using a microwave field (variable power and exposure time) to increase the metal uptake potential and build stable bioactive Ag2O/Ag2CO3 heterojunctions. The results showed that the power of the microwave field (P = 150 or 700 W) had a more negligible effect on carrier modification than time (t = 60 or 150 s). The surface-activated and silver-loaded silica carrier features like morphology, structure, and chemical composition correlate with microbial and antioxidant enzyme activity. We demonstrated that the increased sphericity of silver nanoparticles enormously increased toxicity against E. coli, B. cereus, and S. epidermidis. Furthermore, such structures negatively affected the antioxidant defense system of E. coli, B. cereus, and S. epidermidis through the induction of oxidative stress, leading to cell death. The most robust effects were found for nanocomposites in which the carrier was treated for an extended period in a microwave field.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Dióxido de Silício/química , Prata/química , Porosidade , Testes de Sensibilidade Microbiana , Micro-Ondas , Escherichia coli , Antioxidantes/farmacologia , Nanopartículas Metálicas/química , Nanocompostos/química , Antibacterianos/farmacologia
3.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902156

RESUMO

The paper introduces spatially stable Ni-supported bimetallic catalysts for CO2 methanation. The catalysts are a combination of sintered nickel mesh or wool fibers and nanometal particles, such as Au, Pd, Re, or Ru. The preparation involves the nickel wool or mesh forming and sintering into a stable shape and then impregnating them with metal nanoparticles generated by a silica matrix digestion method. This procedure can be scaled up for commercial use. The catalyst candidates were analyzed using SEM, XRD, and EDXRF and tested in a fixed-bed flow reactor. The best results were obtained with the Ru/Ni-wool combination, which yields nearly 100% conversion at 248 °C, with the onset of reaction at 186 °C. When we tested this catalyst under inductive heating, the highest conversion was observed already at 194 °C.


Assuntos
Dióxido de Carbono , Níquel , Calefação , Dióxido de Silício
4.
Polim Med ; 53(1): 47-58, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36637332

RESUMO

In recent years, there has been a great interest in the potential use of contact lenses as eye drug delivery systems. Static (individual layers of the cornea, sclera and retina) as well as dynamic barriers (blood flow) pose a serious challenge to the effective delivery of the drug substance to the eyeball. The current ophthalmic systems are not optimal for patients, especially in the form of eye drops, where almost 95% of the drug contained in them is lost through the process of absorption through the conjunctiva or tear drainage. This article describes in vitro experiments that examined the use of contact lenses in the context of drug treatment in infectious, inflammatory, allergic, and glaucomatous diseases. Various techniques used to modify the materials as well as their impact on drug release kinetics were discussed. It has also been demonstrated that these methods can be used in practice during in vivo research, both in animal models as well as in sick and healthy people. The advantages of using controlled-release drug systems in the form of contact lenses are the drug dosing regimen, bioavailability and the prolonged residence time of drugs in the eyeball.


Assuntos
Lentes de Contato , Glaucoma , Animais , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos/métodos , Córnea , Soluções Oftálmicas
5.
Nanomaterials (Basel) ; 14(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38392710

RESUMO

In response to the persistent challenge of heavy and noble metal environmental contamination, our research explores a new idea to capture silver through porous spherical silica nanostructures. The aim was realized using microwave radiation at varying power (P = 150 or 800 W) and exposure times (t = 60 or 150 s). It led to the development of a silica surface with enhanced metal-capture capacity. The microwave-assisted silica surface modification influences the notable changes within the carrier but also enforces the crystallization process of silver nanoparticles with different morphology, structure, and chemical composition. Microwave treatment can also stimulate the formation of core-shell bioactive Ag/Ag2CO3 heterojunctions. Due to the silver nanoparticles' sphericity and silver carbonate's presence, the modified nanocomposites exhibited heightened toxicity against common microorganisms, such as E. coli and S. epidermidis. Toxicological assessments, including minimum inhibitory concentration (MIC) and half-maximal inhibitory concentration (IC50) determinations, underscored the efficacy of the nanocomposites. This research represents a significant stride in addressing pollution challenges. It shows the potential of microwave-modified silicas in the fight against environmental contamination. Microwave engineering underscores a sophisticated approach to pollution remediation and emphasizes the pivotal role of nanotechnology in shaping sustainable solutions for environmental stewardship.

6.
Materials (Basel) ; 16(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38004999

RESUMO

This review is devoted to polypyrrole and its morphology, which governs the electroactivity of the material. The macroscopic properties of the material are strictly relevant to microscopic ordering observed at the local level. During the synthesis, various (nano)morphologies can be produced. The formation of the ordered structure is dictated by the ability of the local forces and effects to induce restraints that help shape the structure. This review covers the aspects of morphology and roughness and their impact on the final properties of the modified electrode activity in selected applications.

7.
Materials (Basel) ; 15(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36234384

RESUMO

In this research, six novel unsymmetrical imino-1,8-naphthalimides (AzNI) were synthesized. Comprehensive thermal (thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), optical (UV-Vis, photoluminescence), and electrochemical (CV, DPV) studies were carried out to characterize these new compounds. The molecules showed the onset of thermal decomposition in the temperature range 283-372 °C and molecular glass behavior. Imino-1,8-naphthalimides underwent reduction and oxidation processes with the electrochemical energy band gap (Eg) below 2.41 eV. The optical properties were evaluated in solvents with different polarities and in the solid-state as a thin films and binary blends with poly(N-vinylcarbazole): (2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole) (PVK:PBD). Presented compounds emitted blue light in the solutions and in the green or violet spectral range in the solid-state. Their ability to emit light under external voltage was examined. The devices with guest-host structure emitted light with the maximum located in the blue to red spectral range of the electroluminescence band (EL) depending on the content of the AzNI in the PVK:PBD matrix (guest-host structure).

8.
Bioelectrochemistry ; 144: 108030, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34896782

RESUMO

Current trends in the field of neural tissue engineering include the design of advanced biomaterials combining excellent electrochemical performance with versatile biological characteristics. The purpose of this work was to develop an antibacterial and neuroprotective coating based on a conducting polymer - poly(3,4-ethylenedioxypyrrole) (PEDOP), loaded with an antibiotic agent - tetracycline (Tc). Employing an electrochemical technique to immobilize Tc within a growing polymer matrix allowed to fabricate robust PEDOP/Tc coatings with a high charge storage capacity (63.65 ± 6.05 mC/cm2), drug release efficiency (629.4 µg/cm2 ± 62.7 µg/cm2), and low charge transfer resistance (2.4 ± 0.1 kΩ), able to deliver a stable electrical signal. PEDOP/Tc were found to exhibit strong antimicrobial effects against Gram-negative bacteria Escherichia coli, expressed through negligible adhesion, reduction in viability, and a characteristic elongation of bacterial cells. Cytocompatibility and neuroprotective effects were evaluated using a rat neuroblastoma B35 cell line, and were analyzed using MTT, cell cycle, and Annexin-V apoptosis assays. The presence of Tc was found to enhance neural cell viability and neurite outgrowth. The results confirmed that PEDOP/Tc can serve as an efficient neural electrode coating able to enhance charge transfer, as well as to exhibit bifunctional biological characteristics, different for eukaryotic and prokaryotic cells.


Assuntos
Polímeros
9.
Polymers (Basel) ; 13(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209923

RESUMO

Polyether-pentols (PEPOs) were synthesized from glycidyl ethers and butylene oxide with the application of tripotassium salts of 2,2,6,6-tetrakis(hydroxymethyl)cyclohexanol (HMCH) activated 18C6 for ring-opening polymerization (ROP). The construction of the applied initiator system reflects the ability of crown ether to influence the degree of ion-pair separation with an increased activating effect. As a result formation of bi- or trimodal polymers was observed with molar masses in the range of (Mn = 1200-6000). The observed multi-fraction composition is prescribed to the formation of ionic aggregates with different reactivities during polymerization. The mechanism of the studied processes is discussed. The obtained PEPOs served for a crosslinked PUR synthesis, for which the hydrogen bond index for coupling of hard segments was calculated. Additionally, the range of phase separation was calculated that was higher for PUR-containing aromatic rings as the substituent.

10.
RSC Adv ; 11(55): 34806-34819, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-35494728

RESUMO

In this study, we report the acid-catalyzed and high pressure assisted ring-opening polymerization (ROP) of γ-butyrolactone (GBL). The use of a dually-catalyzed approach combining an external physical factor and internal catalyst (trifluoromethanesulfonic acid (TfOH) or p-toluenesulfonic acid (PTSA)) enforced ROP of GBL, which is considered as hardly polymerizable monomer still remaining a challenge for the modern polymer chemistry. The experiments performed at various thermodynamic conditions (T = 278-323 K and p = 700-1500 MPa) clearly showed that the high pressure supported polymerization process led to obtaining well-defined macromolecules of better parameters (M n = 2200-9700 g mol-1; D = 1.05-1.46) than those previously reported. Furthermore, the parabolic-like dependence of both the molecular weight (M W) and the yield of obtained polymers on variation in temperature and pressure at either isobaric or isothermal conditions was also noticed, allowing the determination of optimal conditions for the polymerization process. However, most importantly, this strategy allowed to significantly reduce the reaction time (just 3 h at room temperature) and increase the yield of obtained polymers (up to 0.62 gPGBL/gGBL). Moreover, despite using a strongly acidic catalyst, synthesized polymers remained non-toxic and biocompatible, as proven by the cytotoxicity test we performed in further analysis. Additional investigation (including MALDI-TOF measurements) showed that the catalyst selection affected not only M W and yield but also the linear/cyclic form content in obtained macromolecules. These findings show the way to tune the properties of PGBL and obtain polymer suitable for application in the biomedical industry.

11.
Materials (Basel) ; 14(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34639899

RESUMO

A new series of 1,8-naphtalimides containing an imine bond at the 3-position of the naphthalene ring was synthesized using 1H, 13C NMR, FTIR, and elementary analysis. The impact of the substituent in the imine linkage on the selected properties and bioimaging of the synthesized compounds was studied. They showed a melting temperature in the range of 120-164 °C and underwent thermal decomposition above 280 °C. Based on cyclic and differential pulse voltammetry, the electrochemical behavior of 1,8-naphtalimide derivatives was evaluated. The electrochemical reduction and oxidation processes were observed. The compounds were characterized by a low energy band gap (below 2.60 eV). Their photoluminescence activities were investigated in solution considering the solvent effect, in the aggregated and thin film, and a mixture of poly(N-vinylcarbazole) (PVK) and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole (PBD) (50:50 wt.%). They demonstrated low emissions due to photoinduced electron transport (PET) occurring in the solution and aggregation, which caused photoluminescence quenching. Some of them exhibited light emission as thin films. They emitted light in the range of 495 to 535 nm, with photoluminescence quantum yield at 4%. Despite the significant overlapping of its absorption range with emission of the PVK:PBD, incomplete Förster energy transfer from the matrix to the luminophore was found. Moreover, its luminescence ability induced by external voltage was tested in the diode with guest-host configuration. The possibility of compound hydrolysis due to the presence of the imine bond was also discussed, which could be of importance in biological studies that evaluate 3-imino-1,8-naphatalimides as imaging tools and fluorescent materials for diagnostic applications and molecular bioimaging.

12.
Materials (Basel) ; 14(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064056

RESUMO

In this paper, six novel symmetrical bis-(imino-1,8-naphthalimides) differing in core and N-substituent structure were synthesized, and their thermal (TGA, DSC), optical (UV-Vis, PL), electrochemical (DPV, CV) properties were evaluated. The compounds were stable to 280 °C and could be transferred into amorphous materials. Electrochemical investigations showed their ability to occur reductions and oxidations processes. They exhibited deep LUMO levels of about -3.22 eV and HOMO levels above -5.80 eV. The optical investigations were carried out in the solutions (polar and non-polar) and in films and blends with PVK:PBD. Bis-(imino-1,8-naphthalimides) absorbed electromagnetic radiation in the range of 243-415 nm and emitted light from blue to yellow. Their capacity for light emission under voltage was preliminarily tested in devices with an active layer consisting of a neat compound and a blend with PVK:PBD. The diodes emitted green or red light.

13.
Polymers (Basel) ; 12(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33255956

RESUMO

Monopotassium dipropylene glycoxide, activated by a 18-crown-6 cation complexing agent (K-DPG/L, where DPG (dipropylene glycol) is a mixture of isomers) was used as an effective initiator of the homopolymerization and copolymerization of several monosubstituted oxiranes, i.e., propylene oxide (PO), 1.2-butylene oxide (BO), and some glycidyl ethers such as allyl, isopropyl, phenyl, and benzyl ones (AGE, IPGE, PGE, and BGE, respectively). The copolymers are novel and can be prospectively used for the fabrication of new thermoplastic or crosslinked polyurethanes. All processes were carried out in homogeneous mild conditions, i.e., tetrahydrofuran solution at room temperature and normal pressure. They resulted in new unimodal macrodiols with Mn = Mcalc in the range of 1500-8300, low dispersity Mw/Mn = 1.08-1.18 and a chemical structure well defined by several techniques, i.e., MALDI-TOF, size exclusion chromatography (SEC), 13C NMR, and FTIR. Monopotassium salts of homopolyether-diols, i.e., PPO-diol, PBO-diol, and PAGE-diol, appeared to be useful macroinitiators for the preparation of new triblock copolyether-diols by polymerization of glycidyl ethers. In BO/BGE random copolymerization initiated with K-DPG/L, macromolecules of copolyether-diol were exclusively formed. Macromolecules of copolyether-diol accompanied by homopolyether PPO-diol were identified in the PO/PGE system. However, AGE and PGE reacted by giving random copolyether-diol as well as homopolymer-diols, i.e., PAGE-diol and PPGE-diol. Macromolecules of prepared copolyether-diols contain various numbers of mers deriving from comonomers; the kind of comonomer determines the composition of the product. Several prepared homopolyether-diols and copolyether-diols could be useful for the synthesis of new thermoplastic polyurethanes.

14.
Materials (Basel) ; 13(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066125

RESUMO

In the present study, the structure and porosity of binary Ti-35Zr (wt.%) alloy were investigated, allowing to consider powder metallurgy as a production method for new metallic materials for potential medical applications. The porous Ti-Zr alloys were obtained by milling, cold isostatic pressing and sintering. The pressure during cold isostatic pressing was a changing parameter and was respectively 250, 500, 750 and 1000 MPa. The X-ray diffraction study revealed only the α phase, which corresponds to the Ti-Zr phase diagram. The microstructure of the Ti-35Zr was observed by optical microscopy and scanning electron microscopy. These observations revealed that the volume fraction of the pores decreased from over 20% to about 7% with increasing pressure during the cold isostatic pressing. The microhardness measurements showed changes from 137 HV0.5 to 225 HV0.5.

15.
Materials (Basel) ; 13(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198345

RESUMO

Polyaniline (PANI) was synthesized chemically with the modified rapid mixing protocol in the presence of sulfuric acid of various concentrations. A two-step synthetic procedure was utilized maintaining low-temperature conditions. Application of the modified rapid mixing protocol allowed obtaining a material with local ordering. A higher concentration of acid allowed obtaining a higher yield of the reaction. Structural characterization performed with Fourier-transform infrared (FTIR) analysis showed the vibration bands characteristic of the formation of the emeraldine salt in both products. Ultraviolet-visible light (UV-Vis) spectroscopy was used for the polaronic band and the p-p* band determination. The absorption result served to estimate the average oxidation level of PANI by comparison of the ratio of the absorbance of the polaronic band to that of the π-π* transition. The absorbance ratio index was higher for PANI synthesized in a more acidic solution, which showed a higher doping level for this polymer. For final powder products, particle size distributions were also estimated, proving that PANI (5.0 M) is characterized by a larger number of small particles; however, these particles can more easily agglomerate and form larger structures. The X-ray diffraction (XRD) patterns revealed an equilibrium between the amorphous and semicrystalline phase in the doped PANI. A higher electrical conductivity value was measured for polymer synthesized in a higher acid concentration. The time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis showed that the molecular composition of the polymers was the same; hence, the difference in properties was a result of local ordering.

16.
RSC Adv ; 9(29): 16554-16564, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35516389

RESUMO

In this study, we newly designed and developed a synthesis route based on the 1,3-dipolar cycloaddition of the derivatives of 4'-(1,2,3-triazol-4-yl)phenyl-2,2':6',2''-terpyridine with various (hetero)aryl substituents, differing in electronic character, on a triazol ring. The obtained compounds were comprehensively characterized by UV-Vis spectroscopy and electrochemical and thermal studies. Moreover, preliminary biological tests were conducted. The investigation allowed the selection of materials with the most promising properties with particular emphasis on the nature of the substituents. In addition, theoretical studies (DFT and TD-DFT) were performed to verify the comprehensive understanding of experimental results.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 175: 168-176, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28038374

RESUMO

A series of polyaromatic hydrocarbons with anthracene, phenanthrene and pyrene units connected with Schiff base junctions were synthesized via condensation of p-phenylenediamine and hydrazine with selected aldehydes. The effect of both hydrocarbon structures and presence of N-N- or phenyl- linked diimines on properties of the prepared azines and azomethines was analyzed. The obtained compounds were soluble in common organic solvents and melted in the range of 226-317°C. Their photophysical and electrochemical properties were investigated by UV-vis, photoluminescence spectroscopies and cyclic voltammetry (CV), respectively. Moreover, a density functional theory (DFT) was applied for calculation of their electronic and geometric structures as well as absorption and emission spectra. Additionally, their electron acceptor activity was preliminary tested in photovoltaic experiment.

18.
ACS Appl Mater Interfaces ; 8(43): 29779-29790, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27709888

RESUMO

Broadband dielectric spectroscopy (BDS) and differential scanning calorimetry (DSC) have been employed to probe dynamics and charge transport of 1-butyl-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide ([bvim][NTf2]) confined in native uniaxial AAO pores as well as to study kinetics of radical polymerization of the examined compound as a function of the degree of confinement. Subsequently, the electronic conductivity of the produced polymers was investigated. As observed, polymerization carried out at T = 363 K proceeds faster under confinement with some saturation effect observed for the sample in pores of smaller diameter. Obtained results were discussed in the context of the very recent reports showing that the free volume of the confined material is higher with respect to the bulk one. It was also noted that conductivity of poly[bvim][NTf2] is significantly higher with respect to the macromolecules obtained upon bulk polymerization. Moreover, charge transport of the confined macromolecules is even higher when compared to the bulk monomeric ionic liquid at some thermodynamic conditions. Additionally, the molecular weight, Mw, of the confined-synthesized polymers is significantly higher with respect to the bulk-synthesized material. Interestingly, both parameters, (i) the enhancement of σdc and (ii) the increase in Mw, can be tuned and controlled by the application of the appropriate confinement. Consequently, those results are quite promising in the context of development of the fabrication of polymerized ionic liquids (PILs) nanomaterials with unique properties and morphologies, which can be further easily applied in the field of nanotechnology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA