Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 43(Database issue): D928-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25378312

RESUMO

The exposome is defined as the totality of all human environmental exposures from conception to death. It is often regarded as the complement to the genome, with the interaction between the exposome and the genome ultimately determining one's phenotype. The 'toxic exposome' is the complete collection of chronically or acutely toxic compounds to which humans can be exposed. Considerable interest in defining the toxic exposome has been spurred on by the realization that most human injuries, deaths and diseases are directly or indirectly caused by toxic substances found in the air, water, food, home or workplace. The Toxin-Toxin-Target Database (T3DB--www.t3db.ca) is a resource that was specifically designed to capture information about the toxic exposome. Originally released in 2010, the first version of T3DB contained data on nearly 2900 common toxic substances along with detailed information on their chemical properties, descriptions, targets, toxic effects, toxicity thresholds, sequences (for both targets and toxins), mechanisms and references. To more closely align itself with the needs of epidemiologists, toxicologists and exposome scientists, the latest release of T3DB has been substantially upgraded to include many more compounds (>3600), targets (>2000) and gene expression datasets (>15,000 genes). It now includes extensive data on 'normal' toxic compound concentrations in human biofluids as well as detailed chemical taxonomies, informative chemical ontologies and a large number of referential NMR, MS/MS and GC-MS spectra. This manuscript describes the most recent update to the T3DB, which was previously featured in the 2010 NAR Database Issue.


Assuntos
Bases de Dados de Compostos Químicos , Exposição Ambiental , Substâncias Perigosas/química , Substâncias Perigosas/toxicidade , Humanos , Internet
2.
Vet Sci ; 10(7)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37505851

RESUMO

The objective of this study was to investigate how subcutaneous (sc) lipopolysaccharide (LPS) administration affects the gene expression profiles of insulin signaling as well as innate and adaptive immunity genes in mouse livers and spleens. FVB/N female mice were randomly assigned to one of two treatment groups at 5 weeks of age: (1) a six-week subcutaneous injection of saline at 11 µL/h (control-CON), or (2) a six-week subcutaneous injection of LPS from Escherichia coli 0111:B4 at 0.1 µg/g body weight at 11 µL/h. At 106 weeks (i.e., 742 days) after the last treatment, mice were euthanized. Following euthanasia, liver and spleen samples were collected, snap frozen, and stored at -80 °C until gene expression profiling. LPS upregulated nine genes in the liver, according to the findings (Pparg, Frs3, Kras, Raf1, Gsk3b, Rras2, Hk2, Pik3r2, and Myd88). With a 4.18-fold increase over the CON group, Pparg was the most up-regulated gene in the liver. Based on the annotation cluster analysis, LPS treatment upregulated liver genes which are involved in pathways associated with hepatic steatosis, B- and T-cell receptor signaling, chemokine signaling, as well as other types of cancers such as endometrial cancer, prostate cancer, and colorectal cancer. LPS increased the spleen expression of Ccl11, Ccl25, Il6, Cxcl5, Pparg, Tlr4, Nos2, Cxcl11, Il1a, Ccl17, and Fcgr3, all of which are involved in innate and adaptive immune responses and the regulation of cytokine production. Furthermore, functional analysis revealed that cytokine-cytokine receptor interaction and chemokine signaling pathways were the most enriched in LPS-treated mice spleen tissue. Our findings support the notion that early-life LPS exposure can result in long-term changes in gene expression profiling in the liver and spleen tissues of FVB/N female mice.

3.
Sci Rep ; 12(1): 10307, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725997

RESUMO

Early detection of sheep pregnancy and the prediction of how many lambs a pregnant ewe delivers affects sheep farmers in a number of ways, most notably with regard to feed management, lambing rate, and sheep/lamb health. The standard practice for direct detection of sheep pregnancy and litter size (PLS) is ultrasonography. However, this approach has a number of limitations. Indirect measurement of PLS using blood biomarkers could offer a simpler, faster and earlier route to PLS detection. Therefore, we undertook a large-scale metabolomics study to identify and validate predictive serum biomarkers of sheep PLS. We conducted a longitudinal experiment that analyzed 131 serum samples over five timepoints (from seven days pre-conception to 70 days post-conception) from six commercial flocks in Alberta and Ontario, Canada. Using LC-MS/MS and NMR, we identified and quantified 107 metabolites in each sample. We also identified three panels of serum metabolite biomarkers that can predict ewe PLS as early as 50 days after breeding. These biomarkers were then validated in separate flocks consisting of 243 animals yielding areas-under-the-receiver-operating-characteristic-curve (AU-ROC) of 0.81-0.93. The identified biomarkers could lead to the development of a simple, low-cost blood test to measure PLS at an early stage of pregnancy, which could help optimize reproductive management on sheep farms.


Assuntos
Espectrometria de Massas em Tandem , Alberta , Animais , Biomarcadores , Cromatografia Líquida , Feminino , Tamanho da Ninhada de Vivíparos , Gravidez , Ovinos
4.
Vet Sci ; 8(9)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34564594

RESUMO

Previously, we showed that bacterial lipopolysaccharide (LPS) converts mouse PrPC protein to a beta-rich isoform (moPrPres) resistant to proteinase K. In this study, we aimed to test if the LPS-converted PrPres is infectious and alters the expression of genes related to prion pathology in brains of terminally sick mice. Ninety female FVB/N mice at 5 weeks of age were randomly assigned to 6 groups treated subcutaneously (sc) for 6 weeks either with: (1) Saline (CTR); (2) LPS from Escherichia coli 0111:B4 (LPS), (3) one-time sc administration of de novo generated mouse recombinant prion protein (moPrP; 29-232) rich in beta-sheet by incubation with LPS (moPrPres), (4) LPS plus one-time sc injection of moPrPres, (5) one-time sc injection of brain homogenate from Rocky Mountain Lab (RLM) scrapie strain, and (6) LPS plus one-time sc injection of RML. Results showed that all treatments altered the expression of various genes related to prion disease and neuroinflammation starting at 11 weeks post-infection and more profoundly at the terminal stage. In conclusion, sc administration of de novo generated moPrPres, LPS, and a combination of moPrPres with LPS were able to alter the expression of multiple genes typical of prion pathology and inflammation.

5.
J Anim Sci ; 98(10)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926096

RESUMO

Mutton and lamb sales continue to grow globally at a rate of 5% per year. However, sheep farming struggles with low profit margins due to high feed costs and modest carcass yields. Selecting those sheep expected to convert feed efficiently and have high carcass merit, as early as possible in their life cycle, could significantly improve the profitability of sheep farming. Unfortunately, direct measurement of feed conversion efficiency (via residual feed intake [RFI]) and carcass merit is a labor-intensive and expensive procedure. Thus, indirect, marker-assisted evaluation of these traits has been explored as a means of reducing the cost of its direct measurement. One promising and potentially inexpensive route to discover biomarkers of RFI and/or carcass merit is metabolomics. Using quantitative metabolomics, we profiled the blood serum metabolome (i.e., the sum of all measurable metabolites) associated with sheep RFI and carcass merit and identified candidate biomarkers of these traits. The study included 165 crossbred ram-lambs that underwent direct measurement of feed consumption to determine their RFI classification (i.e., low vs. high) using the GrowSafe System over a period 40 d. Carcass merit was evaluated after slaughter using standardized methods. Prior to being sent to slaughter, one blood sample was drawn from each animal, and serum prepared and frozen at -80 °C to limit metabolite degradation. A subset of the serum samples was selected based on divergent RFI and carcass quality for further metabolomic analyses. The analyses were conducted using three analytical methods (nuclear magnetic resonance spectroscopy, liquid chromatography mass spectrometry, and inductively coupled mass spectrometry), which permitted the identification and quantification of 161 unique metabolites. Biomarker analyses identified three significant (P < 0.05) candidate biomarkers of sheep RFI (AUC = 0.80), seven candidate biomarkers of carcass yield grade (AUC = 0.77), and one candidate biomarker of carcass muscle-to-bone ratio (AUC = 0.74). The identified biomarkers appear to have roles in regulating energy metabolism and protein synthesis. These results suggest that serum metabolites could be used to categorize and predict sheep for their RFI and carcass merit. Further validation using a larger (3×) and more diverse cohort of sheep is required to confirm these findings.


Assuntos
Ração Animal/análise , Biomarcadores/sangue , Ingestão de Alimentos , Metabolismo Energético , Metabolômica , Ovinos/metabolismo , Animais , Composição Corporal , Masculino , Fenótipo , Ovinos/sangue
6.
Methods Mol Biol ; 1996: 311-324, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31127564

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy is widely considered to be one of the most robust and reproducible analytical platforms for conducting metabolomic experiments. As a metabolomic platform, NMR is not particularly sensitive, but it is nondestructive and requires no prior derivatization or chromatographic separation. It is also very automatable, easy to perform, and highly reproducible and can be used to accurately quantify dozens of metabolites in complex mixtures. To perform a successful NMR metabolomic experiment, it is important to follow good practices in sample preparation, data acquisition, and data analysis. In this chapter, we will describe, step-by-step, the preparation of different livestock samples, including both biofluids (whole blood, serum, urine, rumen content, and fecal water) and tissues (liver, muscle, testis). We will also describe the protocols for acquiring optimal NMR spectra and the techniques used to identify and quantify water-soluble metabolites by NMR spectroscopy.


Assuntos
Gado/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Métodos Analíticos de Preparação de Amostras/métodos , Animais , Líquidos Corporais/metabolismo , Fígado/metabolismo , Masculino , Músculos/metabolismo , Testículo/metabolismo
7.
Metabolites ; 9(6)2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31174372

RESUMO

Metabolomics is one of the latest omics technologies that has been applied successfully in many areas of life sciences. Despite being relatively new, a plethora of publications over the years have exploited the opportunities provided through this data and question driven approach. Most importantly, metabolomics studies have produced great breakthroughs in biomarker discovery, identification of novel metabolites and more detailed characterisation of biological pathways in many organisms. However, translation of the research outcomes into clinical tests and user-friendly interfaces has been hindered due to many factors, some of which have been outlined hereafter. This position paper is the summary of discussion on translational metabolomics undertaken during a peer session of the Australian and New Zealand Metabolomics Conference (ANZMET 2018) held in Auckland, New Zealand. Here, we discuss some of the key areas in translational metabolomics including existing challenges and suggested solutions, as well as how to expand the clinical and industrial application of metabolomics. In addition, we share our perspective on how full translational capability of metabolomics research can be explored.

8.
PLoS One ; 12(5): e0177675, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28531195

RESUMO

Metabolomics uses advanced analytical chemistry techniques to comprehensively measure large numbers of small molecule metabolites in cells, tissues and biofluids. The ability to rapidly detect and quantify hundreds or even thousands of metabolites within a single sample is helping scientists paint a far more complete picture of system-wide metabolism and biology. Metabolomics is also allowing researchers to focus on measuring the end-products of complex, hard-to-decipher genetic, epigenetic and environmental interactions. As a result, metabolomics has become an increasingly popular "omics" approach to assist with the robust phenotypic characterization of humans, crop plants and model organisms. Indeed, metabolomics is now routinely used in biomedical, nutritional and crop research. It is also being increasingly used in livestock research and livestock monitoring. The purpose of this systematic review is to quantitatively and objectively summarize the current status of livestock metabolomics and to identify emerging trends, preferred technologies and important gaps in the field. In conducting this review we also critically assessed the applications of livestock metabolomics in key areas such as animal health assessment, disease diagnosis, bioproduct characterization and biomarker discovery for highly desirable economic traits (i.e., feed efficiency, growth potential and milk production). A secondary goal of this critical review was to compile data on the known composition of the livestock metabolome (for 5 of the most common livestock species namely cattle, sheep, goats, horses and pigs). These data have been made available through an open access, comprehensive livestock metabolome database (LMDB, available at http://www.lmdb.ca). The LMDB should enable livestock researchers and producers to conduct more targeted metabolomic studies and to identify where further metabolome coverage is needed.


Assuntos
Gado/crescimento & desenvolvimento , Metaboloma , Metabolômica/métodos , Animais , Bovinos , Bases de Dados de Compostos Químicos , Cabras , Cavalos , Internet , Gado/metabolismo , Locos de Características Quantitativas , Ovinos , Suínos
9.
Res Vet Sci ; 104: 30-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26850534

RESUMO

The overall purpose of the present study was to search for early screening biomarkers of disease state. Therefore the objectives of this study were to evaluate metabolites related to carbohydrate metabolism, acute phase proteins, and proinflammatory cytokines in the blood of transition dairy cows starting at -8 weeks before calving. Blood samples were collected from 100 multiparous Holstein dairy cows during -8, -4, disease diagnosis, +4 and +8 weeks relative to parturition. Six healthy cows and 6 cows that showed clinical signs of metritis were selected for serum analysis. Overall the results showed that cows with metritis had greater concentration of lactate, interleukin-6 (IL-6), tumor necrosis factor (TNF), and serum amyloid A (SAA) versus healthy cows throughout the experiment. The disease was associated with decrease in milk production and fat: protein ratio. Cows with metritis showed alteration in metabolites related to carbohydrate metabolism, acute phase proteins, and proinflammatory cytokines starting at -8 weeks prior to parturition and appearance of clinical signs of the disease. This study suggests a possible use of cytokines as early markers of disease in dairy cows.


Assuntos
Proteínas de Fase Aguda/análise , Metabolismo dos Carboidratos , Doenças dos Bovinos/imunologia , Citocinas/sangue , Imunidade Inata , Inflamação/veterinária , Doenças Uterinas/veterinária , Animais , Biomarcadores/sangue , Bovinos , Feminino , Inflamação/imunologia , Parto , Período Pós-Parto/imunologia , Doenças Uterinas/imunologia
10.
Res Vet Sci ; 107: 246-256, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27474003

RESUMO

The objective of this investigation was to search for alterations in blood variables related to innate immunity and carbohydrate and lipid metabolism during the transition period in cows affected by ketosis. One hundred multiparous Holstein dairy cows were involved in the study. Blood samples were collected at -8, -4, week of disease diagnosis (+1 to +3weeks), and +4weeks relative to parturition from 6 healthy cows (CON) and 6 cows with ketosis and were analyzed for serum variables. Results showed that cows with ketosis had greater concentrations of serum ß-hydroxybutyric acid (BHBA), interleukin (IL)-6, tumor necrosis factor (TNF), serum amyloid A (SAA), and lactate in comparison with the CON animals. Serum concentrations of BHBA, IL-6, TNF, and lactate were greater starting at -8 and -4weeks prior to parturition in cows with ketosis vs those of CON group. Cows with ketosis also had lower DMI and milk production vs CON cows. Milk fat also was lower in ketotic cows at diagnosis of disease. Cows affected by ketosis showed an activated innate immunity and altered carbohydrate and lipid metabolism several weeks prior to diagnosis of disease. Serum IL-6 and lactate were the strongest discriminators between ketosis cows and CON ones before the occurrence of ketosis, which might be useful as predictive biomarkers of the disease state.


Assuntos
Doenças dos Bovinos/imunologia , Imunidade Inata , Cetose/veterinária , Metabolismo dos Lipídeos/fisiologia , Ácido 3-Hidroxibutírico/sangue , Animais , Metabolismo dos Carboidratos/fisiologia , Bovinos , Doenças dos Bovinos/sangue , Feminino , Interleucina-6/metabolismo , Lactação/metabolismo , Leite/metabolismo , Parto , Período Pós-Parto , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA