Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(2001): 20230640, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37357857

RESUMO

Deep-sea cephalopods are diverse, abundant, and poorly understood. The Cirrata are gelatinous finned octopods and among the deepest-living cephalopods ever recorded. Their natural feeding behaviour remains undocumented. During deep-sea surveys in the Arctic, we observed Cirroteuthis muelleri. Octopods were encountered with their web spread wide, motionless and drifting in the water column 500-2600 m from the seafloor. Individuals of C. muelleri were also repeatedly observed on the seafloor where they exhibited a repeated, behavioural sequence interpreted as feeding. The sequence (11-21 s) consisted of arm web spreading, enveloping and retreating. Prey capture happened during the enveloping phase and lasted 5-49 s. Numerous traces of feeding activity were also observed on the seafloor. The utilization of the water column for drifting and the deep seafloor for feeding is a novel migration behaviour for cephalopods, but known from gelatinous fishes and holothurians. By benthic feeding, the octopods benefit from the enhanced nutrient availability on the seafloor. Drifting in the water column may be an energetically efficient way of transportation while simultaneously avoiding seafloor-associated predators. In situ observations are indispensable to discover the behaviour of abundant megafauna, and the energetic coupling between the pelagic and benthic deep sea.


Assuntos
Almoço , Octopodiformes , Animais , Peixes , Comportamento Alimentar , Água , Ecossistema
2.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37569760

RESUMO

Here, we report a new version of the extended Rate Constants Distribution (RCD) model for metal ion sorption, which includes complex-formation equilibria. With the RCD-complex model, one can predict sorbent performance in the presence of complexing agents using data on metal ion sorption from ligand-free solutions and a set of coefficients for sorption rate constants of different ionic species. The RCD-complex model was applied to breakthrough curves of Cu(II) sorption from acetate and tartrate solutions on polyethyleneimine (PEI) monolith cryogel at different flow rates and ionic speciation. We have shown that, despite the lower stability of Cu(II)-acetate complex, at high flow rates, acetate has a more pronounced negative effect on sorption kinetics than tartrate. The RCD model was successfully used to predict the shape of the breakthrough curves at an arbitrary acetate concentration but failed to predict Cu(II) sorption from tartrate solutions in a broad range of ligand concentrations. Since a twofold increase in sorption capacity was observed at low tartrate concentrations, the latter fact was related to an alteration in the sorption mechanism of Cu(II)-ions, which depended on Cu(II) ionic speciation. The obtained results emphasize the importance of information about sorption kinetics of different ionic forms for the optimization of sorption filter performance in the presence of complexing agents.


Assuntos
Criogéis , Polietilenoimina , Cinética , Tartaratos , Concentração de Íons de Hidrogênio , Metais , Íons , Acetatos , Adsorção , Cobre , Soluções
3.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361764

RESUMO

The feasibility of several approaches to the fabrication of monolith composite cryogels containing transition-metal ferrocyanides for Cs+ ion uptake has been evaluated. Although in the series of investigated metal ion precursors (Cu(II), Zn(II), Ni(II), and Co(II)), in situ formation of the sorption active phase in polyethyleneimine (PEI) cryogel was feasible only in the case of Zn(II) ferrocyanide, this approach has shown significant advantages over the immobilization of ex situ synthesized ferrocyanide nanoparticles. Nanoparticles of the mixed ferrocyanide Zn1.85K0.33[Fe(CN)6] formed in situ had an average size of 516 ± 146 nm and were homogeneously distributed in the monolith located at the polymer surface rather than embedded in the matrix. The Young modulus of the PEI cryogel increased after modification from 25 to 57 kPa, but composites maintained high permeability to the flow. Sorption of Cs+ ions has been investigated at superficial velocity up to 8 m/h. Steep breakthrough profiles and uptake efficiency of >99.5% until breakthrough point confirmed that a supermacroporous structure of the monolith composite assured good mass transfer, so that intraparticle diffusion was not the limiting stage of sorption kinetics. Application of the rate-constant distribution model (RCD model) to analyze the breakthrough curves of Cs+ sorption allowed the identification of two types of sorption sites with a difference in sorption rate constants of ~1 log unit. Most likely, sorption on "fast" sorption sites was governed by ion exchange between Cs+ ions in solution and K+ ions in the ferrocyanide lattice. Cs-137 radionuclide removal was investigated using the monolith composite columns of various geometries at superficial velocity up to the 6.6 m/h; specific gamma activity was reduced from 265 kBq/L to the background level, showing high potential of these materials for POU application.

4.
Molecules ; 25(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086660

RESUMO

Here we report the method of fabrication of supermacroporous monolith sorbents (cryogels) via covalent cross-linking of polyallylamine (PAA) with diglycidyl ether of 1,4-butandiol. Using comparative analysis of the permeability and sorption performance of the obtained PAA cryogels and earlier developed polyethyleneimine (PEI) cryogels, we have demonstrated the advantages and disadvantages of these polymers as sorbents of heavy metal ions (Cu(II), Zn(II), Cd(II), and Ni(II)) in fixed-bed applications and as supermacroporous matrices for the fabrication of composite cryogels containing copper ferrocyanide (CuFCN) for cesium ion sorption. Applying the rate constant distribution (RCD) model to the kinetic curves of Cu(II) ion sorption on PAA and PEI cryogels, we have elucidated the difference in sorption/desorption rates and affinity constants of these materials and showed that physical sorption contributed to the Cu(II) uptake by PAA, but not to that by PEI cryogels. It was shown that PAA cryogels had significantly higher selectivity for Cu(II) sorption in the presence of Zn(II) and Cd(II) ions in comparison with that of PEI cryogels, while irreversible sorption of Co(II) ions by PEI can be used for the separation of Ni(II) and Co(II) ions. Using IR and Mössbauer spectroscopy, we have demonstrated that strong complexation of Cu(II) ions with PEI significantly affects the in situ formation of Cu(II) ferrocyanide nanosorbents leading to their inefficiency for Cs+ ions selective uptake, whereas PAA cryogel was applicable for the fabrication of efficient monolith composites via the in situ formation of CuFCN or loading of ex situ formed CuFCN colloids.


Assuntos
Adsorção/efeitos dos fármacos , Quelantes/química , Criogéis/química , Metais Pesados/isolamento & purificação , Concentração de Íons de Hidrogênio , Íons/química , Íons/isolamento & purificação , Metais Pesados/química , Poliaminas/química , Poli-Hidroxietil Metacrilato/química , Desintoxicação por Sorção
5.
Gels ; 10(7)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39057506

RESUMO

Cross-linking chitosan at room and subzero temperature using a series of diglycidyl ethers of glycols (DEs)-ethylene glycol (EGDE), 1,4-butanediol (BDDE), and poly(ethylene glycol) (PEGDE) has been investigated to demonstrate that DEs can be a more powerful alternative to glutaraldehyde (GA) for fabrication of biocompatible chitosan cryogels with tunable properties. Gelation of chitosan with DEs was significantly slower than with GA, allowing formation of cryogels with larger pores and higher permeability, more suitable for flow-through applications and cell culturing. Increased hydration of the cross-links with increased DE chain length weakened intermolecular hydrogen bonding in chitosan and improved cryogel elasticity. At high cross-linking ratios (DE:chitosan 1:4), the toughness and compressive strength of the cryogels decreased in the order EGDE > BDDE > PEGDE. By varying the DE chain length and concentration, permeable chitosan cryogels with elasticity moduli from 10.4 ± 0.8 to 41 ± 3 kPa, toughness from 2.68 ± 0.5 to 8.3 ± 0.1 kJ/m3, and compressive strength at 75% strain from 11 ± 2 to 33 ± 4 kPa were fabricated. Susceptibility of cryogels to enzymatic hydrolysis was identified as the parameter most sensitive to cross-linking conditions. Weight loss of cryogels increased with increased DE chain length, and degradation rate of PEGDE-cross-linked chitosan decreased 612-fold, when the cross-linker concentration increased 20-fold.

6.
BMC Ecol Evol ; 24(1): 90, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38956464

RESUMO

BACKGROUND: Assessing the historical dynamics of key food web components is crucial to understand how climate change impacts the structure of Arctic marine ecosystems. Most retrospective stable isotopic studies to date assessed potential ecosystem shifts in the Arctic using vertebrate top predators and filter-feeding invertebrates as proxies. However, due to long life histories and specific ecologies, ecosystem shifts are not always detectable when using these taxa. Moreover, there are currently no retrospective stable isotopic studies on various other ecological and taxonomic groups of Arctic biota. To test whether climate-driven shifts in marine ecosystems are reflected in the ecology of short-living mesopredators, ontogenetic changes in stable isotope signatures in chitinous hard body structures were analysed in two abundant squids (Gonatus fabricii and Todarodes sagittatus) from the low latitude Arctic and adjacent waters, collected between 1844 and 2023. RESULTS: We detected a temporal increase in diet and habitat-use generalism (= opportunistic choice rather than specialization), trophic position and niche width in G. fabricii from the low latitude Arctic waters. These shifts in trophic ecology matched with the Atlantification of the Arctic ecosystems, which includes increased generalization of food webs and higher primary production, and the influx of boreal species from the North Atlantic as a result of climate change. The Atlantification is especially marked since the late 1990s/early 2000s. The temporal patterns we found in G. fabricii's trophic ecology were largely unreported in previous Arctic retrospective isotopic ecology studies. Accordingly, T. sagittatus that occur nowadays in the high latitude North Atlantic have a more generalist diet than in the XIXth century. CONCLUSIONS: Our results suggest that abundant opportunistic mesopredators with short life cycles (such as squids) are good candidates for retrospective ecology studies in the marine ecosystems, and to identify ecosystem shifts driven by climate change. Enhanced generalization of Arctic food webs is reflected in increased diet generalism and niche width in squids, while increased abundance of boreal piscivorous fishes is reflected in squids' increased trophic position. These findings support opportunism and adaptability in squids, which renders them as potential winners of short-term shifts in Arctic ecosystems.


Assuntos
Mudança Climática , Decapodiformes , Ecossistema , Cadeia Alimentar , Animais , Regiões Árticas , Mudança Climática/história , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Dieta/história
7.
Zoological Lett ; 9(1): 21, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974237

RESUMO

We report two Arctic species of incirrate octopods new to science. One is formally described here as Muusoctopus aegir Golikov, Gudmundsson & Sabirov sp. nov. while the other, Muusoctopus sp. 1, is not formally described due to a limited number of samples (all are immature individuals). These two species differ from each other, and from other Muusoctopus, especially in: 1) absence of stylets (in M. aegir sp. nov.); 2) proportions of mantle and head; 3) funnel organ morphology (W-shaped with medial and marginal limbs of equal length in M. aegir sp. nov., or medial are slightly longer; V V-shaped with medial limbs slightly longer and broader than marginal in Muusoctopus sp. 1); 4) sucker and gill lamellae counts; 5) relative arm length and sucker diameter; and 6) male reproductive system relative size and morphology. Species of Muusoctopus now comprise four of 12 known Arctic cephalopods. Additionally, this study provides: a) new data on the morphology and reproductive biology of M. johnsonianus and M. sibiricus, and a diagnosis of M. sibiricus; b) the equations to estimate mantle length and body mass from beak measurements of M. aegir sp. nov. and M. johnsonianus; c) a cytochrome c oxidase subunit I gene barcode for M. sibiricus; d) new data on the ecology and distribution of all studied species; and e) a data table for the identification of northern North Atlantic and Arctic species of Muusoctopus.

9.
Animals (Basel) ; 12(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36552473

RESUMO

Cephalopods are important in Arctic marine ecosystems as predators and prey, but knowledge of their life cycles is poor. Consequently, they are under-represented in the Arctic ecosystems assessment models. One important parameter is the change in ecological role (habitat and diet) associated with individual ontogenies. Here, the life history of Gonatus fabricii, the most abundant Arctic cephalopod, is reconstructed by the analysis of individual ontogenetic trajectories of stable isotopes (δ13C and δ15N) in archival hard body structures. This approach allows the prediction of the exact mantle length (ML) and mass when the species changes its ecological role. Our results show that the life history of G. fabricii is divided into four stages, each having a distinct ecology: (1) epipelagic squid (ML < 20 mm), preying mostly on copepods; (2) epi- and occasionally mesopelagic squid (ML 20−50 mm), preying on larger crustaceans, fish, and cephalopods; (3) meso- and bathypelagic squid (ML > 50 mm), preying mainly on fish and cephalopods; and (4) non-feeding bathypelagic gelatinous females (ML > 200 mm). Existing Arctic ecosystem models do not reflect the different ecological roles of G. fabricii correctly, and the novel data provided here are a necessary baseline for Arctic ecosystem modelling and forecasting.

10.
Front Physiol ; 13: 1038064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467695

RESUMO

The use of cephalopod beaks in ecological and population dynamics studies has allowed major advances of our knowledge on the role of cephalopods in marine ecosystems in the last 60 years. Since the 1960's, with the pioneering research by Malcolm Clarke and colleagues, cephalopod beaks (also named jaws or mandibles) have been described to species level and their measurements have been shown to be related to cephalopod body size and mass, which permitted important information to be obtained on numerous biological and ecological aspects of cephalopods in marine ecosystems. In the last decade, a range of new techniques has been applied to cephalopod beaks, permitting new kinds of insight into cephalopod biology and ecology. The workshop on cephalopod beaks of the Cephalopod International Advisory Council Conference (Sesimbra, Portugal) in 2022 aimed to review the most recent scientific developments in this field and to identify future challenges, particularly in relation to taxonomy, age, growth, chemical composition (i.e., DNA, proteomics, stable isotopes, trace elements) and physical (i.e., structural) analyses. In terms of taxonomy, new techniques (e.g., 3D geometric morphometrics) for identifying cephalopods from their beaks are being developed with promising results, although the need for experts and reference collections of cephalopod beaks will continue. The use of beak microstructure for age and growth studies has been validated. Stable isotope analyses on beaks have proven to be an excellent technique to get valuable information on the ecology of cephalopods (namely habitat and trophic position). Trace element analyses is also possible using beaks, where concentrations are significantly lower than in other tissues (e.g., muscle, digestive gland, gills). Extracting DNA from beaks was only possible in one study so far. Protein analyses can also be made using cephalopod beaks. Future challenges in research using cephalopod beaks are also discussed.

11.
J Hazard Mater ; 416: 125880, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492820

RESUMO

Here we report a new approach to predisposal processing of spent resorcinol-formaldehyde resins (RFR) selective to cesium radionuclides via dissolution and hydrothermal oxidation (HTO) with the mineralization efficiency above 85%. Using a combination of potentiometric and colloid titration, we have shown that dissolution of RFR by consecutive treatment with nitric acid and sodium hydroxide solutions at optimal concentrations of 3-5 mol/L and 1 mol/L, respectively, yields colloid solutions of partially depolymerized and oxidized RFR. The efficiency of HTO of resorcinol and RFR solutions with hydrogen peroxide was investigated in a flow-type stainless steel reactor in the temperature range 165-250 °Ð¡ and at linear flow rates of 1-3 cm/min. It was demonstrated that HTO allowed efficient resorcinol mineralization using hydrogen peroxide at H2O2: resorcinol molar ratios above 10 at 195 °Ð¡ and a linear flow rate of 2 cm/min. Due to the colloidal nature of organics in RFR solution, its efficient decomposition occurred at higher temperature or molar excess of the oxidizer as compared to resorcinol, but in both cases HTO was the most efficient in acidic media yielding acetic acid as the main oxidation resistant product.

12.
Gels ; 6(2)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423004

RESUMO

Here we address the problem of what we can expect from investigations of sorption kinetics on cryogel beads in batch. Does macroporosity of beads indeed help eliminate diffusion limitations under static sorption conditions? Are sorption rate constants calculated using phenomenological kinetic models helpful for predicting sorption properties under dynamic conditions? Applying the rate constants distribution (RCD) model to kinetic curves of Cu(II) ions sorption on polyethyleneimine (PEI) cryogel and gel beads and fines, we have shown that diffusion limitations in highly swollen beads are very important and result in at least ten-fold underestimation of the sorption rate constants. To account for intraparticle diffusion, we have developed the RCD-diffusion model, which yields "intrinsic" kinetic parameters for the sorbents, even if diffusion limitations were important in kinetic experiments. We have shown that introduction of a new variable-characteristic diffusion time-to the RCD model significantly improved the reliability of sorption kinetic parameters and allowed prediction of the minimal residence time in column required for efficient uptake of the adsorbate under dynamic conditions. The minimal residence time determined from kinetic curves simulated using the RCD-diffusion model was in good agreement with experimental data on breakthrough curves of Cu(II) ion sorption on monolith PEI cryogel at different flow rates.

13.
Sci Rep ; 10(1): 21506, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33299075

RESUMO

Trophic niche and diet comparisons among closely sympatric marine species are important to understand complex food webs, particularly in regions most affected by climate change. Using stable isotope analyses, all ontogenetic stages of three sympatric species of Arctic cephalopods (genus Rossia) were studied to assess inter- and intraspecific competition with niche and diet overlap and partitioning in West Greenland and the Barents Sea. Seven traits related to resource and habitat utilization were identified in Rossia: no trait was shared by all three species. High boreal R. megaptera and Arctic endemic R. moelleri shared three traits with each other, while both R. megaptera and R. moelleri shared only two unique traits each with widespread boreal-Arctic R. palpebrosa. Thus all traits formed fully uncrossing pattern with each species having unique strategy of resource and habitat utilization. Predicted climate changes in the Arctic would have an impact on competition among Rossia with one potential 'winner' (R. megaptera in the Barents Sea) but no potential 'losers'.


Assuntos
Decapodiformes/metabolismo , Animais , Regiões Árticas , Cefalópodes/metabolismo , Mudança Climática , Decapodiformes/genética , Dieta , Ecossistema , Cadeia Alimentar , Especiação Genética , Estado Nutricional , Simpatria/genética
14.
Sci Rep ; 9(1): 19099, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836823

RESUMO

Vampyroteuthis infernalis Chun, 1903, is a widely distributed deepwater cephalopod with unique morphology and phylogenetic position. We assessed its habitat and trophic ecology on a global scale via stable isotope analyses of a unique collection of beaks from 104 specimens from the Atlantic, Pacific and Indian Oceans. Cephalopods typically are active predators occupying a high trophic level (TL) and exhibit an ontogenetic increase in δ15N and TL. Our results, presenting the first global comparison for a deep-sea invertebrate, demonstrate that V. infernalis has an ontogenetic decrease in δ15N and TL, coupled with niche broadening. Juveniles are mobile zooplanktivores, while larger Vampyroteuthis are slow-swimming opportunistic consumers and ingest particulate organic matter. Vampyroteuthis infernalis occupies the same TL (3.0-4.3) over its global range and has a unique niche in deep-sea ecosystems. These traits have enabled the success and abundance of this relict species inhabiting the largest ecological realm on the planet.


Assuntos
Ecologia , Comportamento Alimentar , Isótopos de Nitrogênio/análise , Octopodiformes/fisiologia , Animais , Mudança Climática , Ecossistema , Geografia , Oxigênio/metabolismo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA