RESUMO
An approach is described for high-throughput quality assessment of drug candidate libraries using high-resolution acoustic ejection mass spectrometry (AEMS). Sample introduction from 1536-well plates is demonstrated for this application using 2.5 nL acoustically dispensed sample droplets into an Open Port Interface (OPI) with pneumatically assisted electrospray ionization at a rate of one second per sample. Both positive and negative ionization are shown to be essential to extend the compound coverage of this protease inhibitor-focused library. Specialized software for efficiently interpreting this data in 1536-well format is presented. A new high-throughput method for quantifying the concentration of the components (HTQuant) is proposed that neither requires adding an internal standard to each well nor further encumbers the high-throughput workflow. This approach for quantitation requires highly reproducible peak areas, which is shown to be consistent within 4.4 % CV for a 1536-well plate analysis. An approach for troubleshooting the workflow based on the background ion current signal is also presented. The AEMS data is compared to the industry standard LC/PDA/ELSD/MS approach and shows similar coverage but at 180-fold greater throughput. Despite the same ionization process, both methods confirmed the presence of a small percentage of compounds in wells that the other did not. The data for this relatively small, focused library is compared to a larger, more chemically diverse library to indicate that this approach can be more generally applied beyond this single case study. This capability is particularly timely considering the growing implementation of artificial intelligence strategies that require the input of large amounts of high-quality data to formulate predictions relevant to the drug discovery process. The molecular structures of the 872-compound library analyzed here are included to begin the process of correlating molecular structures with ionization efficiency and other parameters as an initial step in this direction.
RESUMO
Bacterial biofilms are populations of bacteria within a self-produced adherent extracellular matrix that are notoriously resistant to treatment. Existing methods for biofilm quantification are often limited in their dynamic range of detection (signal-to-background), throughput, and require modifications to the protocol depending on the bacterial species. To address these limitations, a broad utility, high-throughput (HTP) method was required. Using a fluorescent dye, FM1-43, we stained the biofilm, followed by solvent extraction and quantitation of biofilm employing a fluorescent plate reader. Utilizing eight different bacterial pathogens, we demonstrate that this method is widely applicable for biofilm quantification. Depending on the species, this biofilm assay offered a large dynamic range of 8-146 fold change compared to 2-22 fold for crystal violet staining under similar conditions. In addition to routine biofilm quantification using this new assay, as a proof-of-concept, 1200 compounds were screened against two different bacterial species to identify biofilm inhibitors. In our HTP screens we successfully identified compounds rifabutin and ethavarine as potential biofilm inhibitors of Burkholderia pseudomallei Bp82 and Acinetobacter baumannii biofilm production respectively. This newly validated biofilm assay is robust and can be readily adapted for antibiofilm screening campaigns and can supplant other less sensitive and low throughput methods.
Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Acinetobacter baumannii/fisiologiaRESUMO
Filoviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for Bombali virus (BOMV), Bundibugyo virus (BDBV), Ebola virus (EBOV), Reston virus (RESTV), Sudan virus (SUDV) and Taï Forest virus (TAFV), and genus Marburgvirus includes a single species for Marburg virus (MARV) and Ravn virus (RAVV). Ebola virus (EBOV) has emerged as a significant public health concern since the 2013-2016 Ebola Virus Disease outbreak in Western Africa. Currently, there are no therapeutics approved and the need for Ebola-specific therapeutics remains a gap. In search for anti-Ebola therapies we tested the idea of using inhibitory properties of peptides corresponding to the C-terminal heptad-repeat (HR2) domains of class I fusion proteins against EBOV infection. The fusion protein GP2 of EBOV belongs to class I, suggesting that a similar strategy to HIV may be applied to inhibit EBOV infection. The serum half-life of peptides was expanded by cholesterol conjugation to allow daily dosing. The peptides were further constrained to stabilize a helical structure to increase the potency of inhibition. The EC50s of lead peptides were in low micromolar range, as determined by a high-content imaging test of EBOV-infected cells. Lead peptides were tested in an EBOV lethal mouse model and efficacy of the peptides were determined following twice-daily administration of peptides for 9 days. The most potent peptide was able to protect mice from lethal challenge of mouse-adapted Ebola virus. These data show that engineered peptides coupled with cholesterol can inhibit viral production, protect mice against lethal EBOV infection, and may be used to build novel therapeutics against EBOV.
Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Marburgvirus/efeitos dos fármacos , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Antivirais/química , Linhagem Celular , Colesterol/química , Modelos Animais de Doenças , Doença pelo Vírus Ebola/virologia , Doença do Vírus de Marburg/virologia , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Peptídeos/química , Conformação Proteica , Relação Estrutura-AtividadeRESUMO
There is an urgent need to develop novel treatments to counter Botulinum neurotoxin (BoNT) poisoning. Currently, the majority of BoNT drug development efforts focus on directly inhibiting the proteolytic components of BoNT, i.e. light chains (LC). Although this is a rational approach, previous research has shown that LCs are extremely difficult drug targets and that inhibiting multi-serotype BoNTs with a single LC inhibitor may not be feasible. An alternative approach would target neuronal pathways involved in intoxication/recovery, rather than the LC itself. Phosphorylation-related mechanisms have been implicated in the intoxication pathway(s) of BoNTs. However, the effects of phosphatase inhibitors upon BoNT activity in the physiological target of BoNTs, i.e. motor neurons, have not been investigated. In this study, a small library of phosphatase inhibitors was screened for BoNT antagonism in the context of mouse embryonic stem cell-derived motor neurons (ES-MNs). Four inhibitors were found to function as BoNT/A antagonists. Subsequently, we confirmed that these inhibitors protect against BoNT/A in a dose-dependent manner in human ES-MNs. Additionally, these compounds provide protection when administered in post-intoxication scenario. Importantly, the inhibitors were also effective against BoNT serotypes B and E. To the best of our knowledge, this is the first study showing phosphatase inhibitors as broad-spectrum BoNT antagonists.
Assuntos
Toxinas Botulínicas/toxicidade , Células-Tronco Embrionárias/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Neurônios Motores/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Toxinas Botulínicas/antagonistas & inibidores , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Células-Tronco Embrionárias/metabolismo , Humanos , Camundongos , Neurônios Motores/metabolismo , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Proteínas SNARE/metabolismoRESUMO
Botulinum neurotoxins (BoNTs), the causative agents of botulism, are potent inhibitors of neurotransmitter release from motor neurons. There are currently no drugs to treat BoNT intoxication after the onset of the disease symptoms. In this study, we explored how modulation of key host pathways affects the process of BoNT intoxication in human motor neurons, focusing on Src family kinase (SFK) signaling. Motor neurons derived from human embryonic stem (hES) cells were treated with a panel of SFK inhibitors and intoxicated with BoNT serotypes A, B, or E (which are responsible for >95 % of human botulism cases). Subsequently, it was found that bosutinib, dasatinib, KX2-391, PP1, PP2, Src inhibitor-1, and SU6656 significantly antagonized all three of the serotypes. Furthermore, the data indicated that the treatment of hES-derived motor neurons with multiple SFK inhibitors increased the antagonistic effect synergistically. Mechanistically, the small molecules appear to inhibit BoNTs by targeting host pathways necessary for intoxication and not by directly inhibiting the toxins' proteolytic activity. Importantly, the identified inhibitors are all well-studied with some in clinical trials while others are FDA-approved drugs. Overall, this study emphasizes the importance of targeting host neuronal pathways, rather than the toxin's enzymatic components, to antagonize multiple BoNT serotypes in motor neurons.
Assuntos
Toxinas Botulínicas/toxicidade , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo , Células-Tronco Embrionárias/citologia , Humanos , Proteólise/efeitos dos fármacos , SorogrupoRESUMO
Synaptosomal-associated protein-25 (SNAP-25) is a component of the soluble NSF attachment protein receptor (SNARE) complex that is essential for synaptic neurotransmitter release. Botulinum neurotoxin serotype A (BoNT/A) is a zinc metalloprotease that blocks exocytosis of neurotransmitter by cleaving the SNAP-25 component of the SNARE complex. Currently there are no licensed medicines to treat BoNT/A poisoning after internalization of the toxin by motor neurons. The development of effective therapeutic measures to counter BoNT/A intoxication has been limited, due in part to the lack of robust high-throughput assays for screening small molecule libraries. Here we describe a high content imaging (HCI) assay with utility for identification of BoNT/A inhibitors. Initial optimization efforts focused on improving the reproducibility of inter-plate results across multiple, independent experiments. Automation of immunostaining, image acquisition, and image analysis were found to increase assay consistency and minimize variability while enabling the multiparameter evaluation of experimental compounds in a murine motor neuron system.