Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Annu Rev Genet ; 52: 465-487, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30208289

RESUMO

Advances in genome-wide sequence technologies allow for detailed insights into the complexity of RNA landscapes of organisms from all three domains of life. Recent analyses of archaeal transcriptomes identified interaction and regulation networks of noncoding RNAs in this understudied domain. Here, we review current knowledge of small, noncoding RNAs with important functions for the archaeal lifestyle, which often requires adaptation to extreme environments. One focus is RNA metabolism at elevated temperatures in hyperthermophilic archaea, which reveals elevated amounts of RNA-guided RNA modification and virus defense strategies. Genome rearrangement events result in unique fragmentation patterns of noncoding RNA genes that require elaborate maturation pathways to yield functional transcripts. RNA-binding proteins, e.g., L7Ae and LSm, are important for many posttranscriptional control functions of RNA molecules in archaeal cells. We also discuss recent insights into the regulatory potential of their noncoding RNA partners.


Assuntos
Archaea/genética , Interação Gene-Ambiente , RNA Arqueal/genética , Pequeno RNA não Traduzido/genética , Archaea/metabolismo , Regulação da Expressão Gênica em Archaea , RNA Arqueal/metabolismo , Transdução de Sinais/genética
2.
RNA Biol ; 12(5): 490-500, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25806405

RESUMO

The existence of sense overlapping transcripts that share regulatory and coding information in the same genomic sequence shows an additional level of prokaryotic gene expression complexity. Here we report the discovery of ncRNAs associated with IS1341-type transposase (tnpB) genes, at the 3'-end of such elements, with examples in archaea and bacteria. Focusing on the model haloarchaeon Halobacterium salinarum NRC-1, we show the existence of sense overlapping transcripts (sotRNAs) for all its IS1341-type transposases. Publicly available transcriptome compendium show condition-dependent differential regulation between sotRNAs and their cognate genes. These sotRNAs allowed us to find a UUCA tetraloop motif that is present in other archaea (ncRNA family HgcC) and in a H. salinarum intergenic ncRNA derived from a palindrome associated transposable elements (PATE). Overexpression of one sotRNA and the PATE-derived RNA harboring the tetraloop motif improved H. salinarum growth, indicating that these ncRNAs are functional.


Assuntos
Genes Arqueais , Halobacterium salinarum/genética , RNA não Traduzido/genética , Transposases/genética , Sequência de Bases , Perfilação da Expressão Gênica , Halobacterium salinarum/crescimento & desenvolvimento , Dados de Sequência Molecular , Motivos de Nucleotídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retroelementos/genética
3.
Cell Host Microbe ; 32(6): 875-886.e9, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38754416

RESUMO

Plasmid-encoded type IV-A CRISPR-Cas systems lack an acquisition module, feature a DinG helicase instead of a nuclease, and form ribonucleoprotein complexes of unknown biological functions. Type IV-A3 systems are carried by conjugative plasmids that often harbor antibiotic-resistance genes and their CRISPR array contents suggest a role in mediating inter-plasmid conflicts, but this function remains unexplored. Here, we demonstrate that a plasmid-encoded type IV-A3 system co-opts the type I-E adaptation machinery from its host, Klebsiella pneumoniae (K. pneumoniae), to update its CRISPR array. Furthermore, we reveal that robust interference of conjugative plasmids and phages is elicited through CRISPR RNA-dependent transcriptional repression. By silencing plasmid core functions, type IV-A3 impacts the horizontal transfer and stability of targeted plasmids, supporting its role in plasmid competition. Our findings shed light on the mechanisms and ecological function of type IV-A3 systems and demonstrate their practical efficacy for countering antibiotic resistance in clinically relevant strains.


Assuntos
Sistemas CRISPR-Cas , Conjugação Genética , Klebsiella pneumoniae , Plasmídeos , Plasmídeos/genética , Klebsiella pneumoniae/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Transferência Genética Horizontal , Bacteriófagos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
4.
Front Microbiol ; 14: 1197877, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396357

RESUMO

Nudix hydrolases comprise a large and ubiquitous protein superfamily that catalyzes the hydrolysis of a nucleoside diphosphate linked to another moiety X (Nudix). Sulfolobus acidocaldarius possesses four Nudix domain-containing proteins (SACI_RS00730/Saci_0153, SACI_RS02625/Saci_0550, SACI_RS00060/Saci_0013/Saci_NudT5, and SACI_RS00575/Saci_0121). Deletion strains were generated for the four individual Nudix genes and for both Nudix genes annotated to encode ADP-ribose pyrophosphatases (SACI_RS00730, SACI_RS00060) and did not reveal a distinct phenotype compared to the wild-type strain under standard growth conditions, nutrient stress or heat stress conditions. We employed RNA-seq to establish the transcriptome profiles of the Nudix deletion strains, revealing a large number of differentially regulated genes, most notably in the ΔSACI_RS00730/SACI_RS00060 double knock-out strain and the ΔSACI_RS00575 single deletion strain. The absence of Nudix hydrolases is suggested to impact transcription via differentially regulated transcriptional regulators. We observed downregulation of the lysine biosynthesis and the archaellum formation iModulons in stationary phase cells, as well as upregulation of two genes involved in the de novo NAD+ biosynthesis pathway. Furthermore, the deletion strains exhibited upregulation of two thermosome subunits (α, ß) and the toxin-antitoxin system VapBC, which are implicated in the archaeal heat shock response. These results uncover a defined set of pathways that involve archaeal Nudix protein activities and assist in their functional characterization.

5.
Nat Commun ; 14(1): 7597, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989750

RESUMO

NAD is a coenzyme central to metabolism that also serves as a 5'-terminal cap for bacterial and eukaryotic transcripts. Thermal degradation of NAD can generate nicotinamide and ADP-ribose (ADPR). Here, we use LC-MS/MS and NAD captureSeq to detect and identify NAD-RNAs in the thermophilic model archaeon Sulfolobus acidocaldarius and in the halophilic mesophile Haloferax volcanii. None of the four Nudix proteins of S. acidocaldarius catalyze NAD-RNA decapping in vitro, but one of the proteins (Saci_NudT5) promotes ADPR-RNA decapping. NAD-RNAs are converted into ADPR-RNAs, which we detect in S. acidocaldarius total RNA. Deletion of the gene encoding the 5'-3' exonuclease Saci-aCPSF2 leads to a 4.5-fold increase in NAD-RNA levels. We propose that the incorporation of NAD into RNA acts as a degradation marker for Saci-aCPSF2. In contrast, ADPR-RNA is processed by Saci_NudT5 into 5'-p-RNAs, providing another layer of regulation for RNA turnover in archaeal cells.


Assuntos
NAD , RNA , NAD/metabolismo , Adenosina Difosfato Ribose/metabolismo , Archaea/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem
6.
Cell Rep ; 39(1): 110640, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385737

RESUMO

Synthesis of ribosomes begins in the nucleolus with formation of the 90S pre-ribosome, during which the pre-40S and pre-60S pathways diverge by pre-rRNA cleavage. However, it remains unclear how, after this uncoupling, the earliest pre-60S subunit continues to develop. Here, we reveal a large-subunit intermediate at the beginning of its construction when still linked to the 90S, the precursor to the 40S subunit. This primordial pre-60S is characterized by the SPOUT domain methyltransferase Upa1-Upa2, large α-solenoid scaffolds, Mak5, one of several RNA helicases, and two small nucleolar RNA (snoRNAs), C/D box snR190 and H/ACA box snR37. The emerging pre-60S does not efficiently disconnect from the 90S pre-ribosome in a dominant mak5 helicase mutant, allowing a 70-nm 90S-pre-60S bipartite particle to be visualized by electron microscopy. Our study provides insight into the assembly pathway when the still-connected nascent 40S and 60S subunits are beginning to separate.


Assuntos
Subunidades Ribossômicas Maiores de Eucariotos , Ribossomos , Proteínas de Saccharomyces cerevisiae , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Nat Microbiol ; 7(11): 1870-1878, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36175516

RESUMO

Bacterial Type IV CRISPR-Cas systems are thought to rely on multi-subunit ribonucleoprotein complexes to interfere with mobile genetic elements, but the substrate requirements and potential DNA nuclease activities for many systems within this type are uncharacterized. Here we show that the native Pseudomonas oleovorans Type IV-A CRISPR-Cas system targets DNA in a PAM-dependent manner and elicits interference without showing DNA nuclease activity. We found that the first crRNA of P. oleovorans contains a perfect match in the host gene coding for the Type IV pilus biogenesis protein PilN. Deletion of the native Type IV CRISPR array resulted in upregulation of pilN operon transcription in the absence of genome cleavage, indicating that Type IV-A CRISPR-Cas systems can function in host gene regulation. These systems resemble CRISPR interference (CRISPRi) methodology but represent a natural CRISPRi-like system that is found in many Pseudomonas and Klebsiella species and allows for gene silencing using engineered crRNAs.


Assuntos
Pseudomonas oleovorans , Pseudomonas oleovorans/genética , Sistemas CRISPR-Cas , Bactérias/genética , DNA , Desoxirribonucleases
8.
Front Microbiol ; 12: 654029, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776983

RESUMO

Post-transcriptional modifications fulfill many important roles during ribosomal RNA maturation in all three domains of life. Ribose 2'-O-methylations constitute the most abundant chemical rRNA modification and are, for example, involved in RNA folding and stabilization. In archaea, these modification sites are determined by variable sets of C/D box sRNAs that guide the activity of the rRNA 2'-O-methyltransferase fibrillarin. Each C/D box sRNA contains two guide sequences that can act in coordination to bridge rRNA sequences. Here, we will review the landscape of archaeal C/D box sRNA genes and their target sites. One focus is placed on the apparent accelerated evolution of guide sequences and the varied pairing of the two individual guides, which results in different rRNA modification patterns and RNA chaperone activities.

9.
Cell Syst ; 12(1): 56-67.e6, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33238135

RESUMO

Enzymes maintain metabolism, and their concentration affects cellular fitness: high enzyme levels are costly, and low enzyme levels can limit metabolic flux. Here, we used CRISPR interference (CRISPRi) to study the consequences of decreasing E. coli enzymes below wild-type levels. A pooled CRISPRi screen with 7,177 strains demonstrates that metabolism buffers fitness defects for hours after the induction of CRISPRi. We characterized the metabolome and proteome responses in 30 CRISPRi strains and elucidated three gene-specific buffering mechanisms: ornithine buffered the knockdown of carbamoyl phosphate synthetase (CarAB) by increasing CarAB activity, S-adenosylmethionine buffered the knockdown of homocysteine transmethylase (MetE) by de-repressing expression of the methionine pathway, and 6-phosphogluconate buffered the knockdown of 6-phosphogluconate dehydrogenase (Gnd) by activating a bypass. In total, this work demonstrates that CRISPRi screens can reveal global sources of metabolic robustness and identify local regulatory mechanisms that buffer decreases of specific enzymes. A record of this paper's transparent peer review process is included in the Supplemental Information.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Escherichia coli , Escherichia coli/genética , Metaboloma
10.
Ann N Y Acad Sci ; 1447(1): 88-96, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30994930

RESUMO

Analyses of the RNA metabolism of hyperthermophilic archaea highlight the efficiency of regulatory RNAs and RNA-guided processes at extreme temperatures. These organisms must overcome the intrinsic thermolability of RNAs. Elevated levels of RNA modifications and structured GC-rich regions are observed for many universal noncoding RNA families. Guide RNAs are often protected from degradation by their presence within ribonucleoprotein complexes. Modification and ligation of RNA termini can be employed to impair exonucleolytic degradation. Finally, antisense strand transcription promotes the formation of RNA duplexes and can be used to stabilize RNA regions. In our review, we provide examples of these RNA stabilization mechanisms that have been observed in hyperthermophilic archaeal model organisms.


Assuntos
Archaea/química , Archaea/genética , Estabilidade de RNA/genética , RNA Arqueal/química , RNA Arqueal/genética , Animais , Humanos , Proteólise
11.
Genes (Basel) ; 10(4)2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959844

RESUMO

Antisense RNAs (asRNAs) are present in diverse organisms and play important roles in gene regulation. In this work, we mapped the primary antisense transcriptome in the halophilic archaeon Halobacterium salinarum NRC-1. By reanalyzing publicly available data, we mapped antisense transcription start sites (aTSSs) and inferred the probable 3' ends of these transcripts. We analyzed the resulting asRNAs according to the size, location, function of genes on the opposite strand, expression levels and conservation. We show that at least 21% of the genes contain asRNAs in H. salinarum. Most of these asRNAs are expressed at low levels. They are located antisense to genes related to distinctive characteristics of H. salinarum, such as bacteriorhodopsin, gas vesicles, transposases and other important biological processes such as translation. We provide evidence to support asRNAs in type II toxin⁻antitoxin systems in archaea. We also analyzed public Ribosome profiling (Ribo-seq) data and found that ~10% of the asRNAs are ribosome-associated non-coding RNAs (rancRNAs), with asRNAs from transposases overrepresented. Using a comparative transcriptomics approach, we found that ~19% of the asRNAs annotated in H. salinarum belong to genes with an ortholog in Haloferax volcanii, in which an aTSS could be identified with positional equivalence. This shows that most asRNAs are not conserved between these halophilic archaea.


Assuntos
Perfilação da Expressão Gênica , Halobacterium salinarum/genética , RNA Antissenso/genética , Transcriptoma/genética , Regulação da Expressão Gênica em Archaea/genética , Genoma Arqueal/genética , RNA não Traduzido/genética , Ribossomos/genética , Sítio de Iniciação de Transcrição
12.
ACS Synth Biol ; 7(12): 2775-2782, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30424596

RESUMO

Construction of pooled genetic variant libraries has become very fast and versatile. The current limitation of this technique is to select cells with a desired phenotype from very large libraries. Especially cells with poor fitness and slow growth are difficult to select because they are rapidly outcompeted by fitter cells. Here, we demonstrate selective and high-throughput enrichment of slow-growing strains using a fluorescent TIMER protein and flow cytometry. As a proof of principle, we created a metabolism-wide CRISPR interference library for Escherichia coli and enriched targets that interfere with amino acid metabolism. After enrichment of slow-growing cells, the CRISPRi library consisted almost entirely of targets that block amino acid biosynthesis. These results provide general guidelines for how to enrich slow-growing strains from a large pool of genetic variants, with applications in genetic screens, metabolic engineering, and synthetic biology.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Biblioteca Gênica , Proteínas Luminescentes/genética , Engenharia Metabólica/métodos , Aminoácidos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Citometria de Fluxo , Proteínas Luminescentes/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA